
FOMA SYTM DEIGN&DVLPMNIC

N0P..1BOX3-C0203

AUBURN, AL 36831-3004
(0)887 9444

19941223 024

I
II

N00014-93-C-0213
FOURTH QUARTERLY REPORT

I' Table of Contents:

I
A The Fourth Quarterly Report I

i B Inside FDR 2 5

1 C A CSP Priority Operator for FDR 2 25

D Models of the Fault Tolerant Processor 35I

I
DTiC ET1 '; I

--------....... ...
/- -.....;i- --, ----------

I

I
U

I

I ___________I/

I

3 N00014-93-C-0213
Fourth Quarterly Progress Report

Michael Goldsmith
Formal Systems Design & Development, Inc.

December 16, 1994

1' Summary
This Document summarizes the progress to date in the Office of Naval Research SBIR
Project N00014-93-C-0213 Embedded Transputer-based System Design and indicatesI the expected direction of the Research and Development in the following periods.

3 1Overview

The level of effort expended is currently broadly on track both at Formal Systems and at
the Charles Stark Draper Laboratory (Draper) and Formal Systems (Europe) Ltd. This
quarter's work has spilled somewhat into the following period, due to staff resource problems
arising from circumstances outside our control. Additional effort within the project fifth
quarter is expected to bring progress back into line with the plan in a reasonable time.
With regard to the personnel changes foreseen in the previous report:

"* Neil Brock, the technical point-of-contact at Draper, left as anticipated. Ms Donald,
however, also left Draper over the summer. The new technical point-of-contact is
Richard Harper [(617) 258-2243], the Senior Engineer leading the technical develop-
ment of Draper's current fault-tolerant computer systems.

" Dr Richard Chapman (of Auburn University) is continuing to contribute to the project
on a part-time basis.

The main areas of activity and achievement during this period are:

* Completion of the first iteration of work on a prioritized model for CSP suitable for
justifying discrete analysis of real-time behavior.

* Prototype implementation of an extension to FDR 2 to support this model.
a Design, analysis and modeling of the communication and voting architecture of a

Transputer Fault-Tolerant Processor node with particular provision for the interaction3 with its task scheduling.

These are discussed in more detail in the following sections and the accompanying Deliver-
ables.
The current status of Deliverables is summarized in Table 1.

I
I

Deliverable Due Status
D2.1 Detailed natural-language problem statement End Q1 Delivered Q2
D2.2 Formalization of single-lane scheduling problem and End Q1 Delivered Q3 1

of fault tolerance requirements
D1.1 Initial requirements definition for real-time modeling End Q2 Delivered Q2

extensions to FDR
D2.3 Idealized (single-lane) scheduler model End Q2 Delivered Q3 1

D2.4 Fault models and redundant scheduler correctness End Q3 Delivered Q3
criteria

D1.2 Prototype software for discrete real-time extensions to End Q4 Delivered Q4
FDR

D2.5 Initial process-algebraic solution and Draper appraisal End Q4 Part delivered Q4
of scheduler models

D1.3 Prototype Software for Continuous Real-Time End Q5 Deferred
Extensions to FDR

D1.4 Appraisal and Revised Requirements for Discrete End Q5 On schedule
Real-Time Extensions to FDR

D1.5 Translation and Interface Tools Requirements End Q5 In progress
Definition

D2.6 Timing Requirements Analysis for Scheduler End Q5 On schedule
D1.6 Appraisal and Revised Requirements for Continuous End Q6 Not yet started

Real-Time Extensions to FDR
D1.7 Prototype Software for Translation and Interface End Q6 Not yet started

Tools
D2.7 Initial Prototype Transputer/occam Implementation End Q6 Not yet started

and Verification of Conformance
D1.8 Revised Code and Full Draft End Q7 Not yet started

Documentation/Justification of Tools
D2.8 Revised Prototype Transputer/occam Implementation End Q7 Not yet started

and Architectural Specification of Potential VLSI
Realizations

D1.9 Final Report on Theoretical and Software Tool End Q8 Not yet started
Developments

D2.9 Final Report and Appraisal of Fault-Tolerant End Q8 Not yet started
Scheduler Demonstrator

Table 1: Deliverable schedule

Ji Note 1: As anticipated, the delayed deliverables D2.2 and D2.3 have been consolidated into
a single document.

g2
I

I

1 2 Theory and Software Tools

The major goal of this project is to establish a viable route from specifications in Hoare's
Communicating Sequential Processes (CSP) [4] and its real-time variants [5, 2] to imple-
mentations of real-world, substantial real-time and/or fault-tolerant systems. The initial
concentration of effort under this head has been directed towards closing the gap between
the current real-time specification and hand-crafted verification available within Timed CSP,
on the one hand, and the available highly efficient mechanized verification and development
aid for untimed CSP systems which is presented by the Formal Systems (Europe) Ltd model
checking tool, FDR, and the new generation FDR 2.

The approach taken addresses this problem from both ends: finding a model and style of
specification which allows description of (necessarily discrete) real-time behavior in terms
of events, which can be handled by FDR; and expanding the capabilities of FDR to
deal with the greatly increased complexity (in terms of number of states) that appears
when consideration of the passage of time is introduced to formerly atomic events, and to
allow ready adaptation to non-standard variants of operational semantics and refinement.
Both these issues have been addressed within the framework of the second-generation tool,
FDR 2. Progress to date is reported in Deliverable D1.2, which accompanies this report.

The apparent tractability of the kind of problems arising from the Demonstrator Ap-
plication under the discrete modeling of time is such that we propose to concentrate our
attention on that approach for the present, deferring the study of continuous real-time tools

* until later in the project.

g 3 Demonstrator Application

The demonstrator application is to be a verified real-time fault-tolerant scheduler, for a
machine such as the Draper Transputer Fault-Tolerant Processor (TFTP).

Significant features of recent developments include:

* Clarification of arguments based on symmetry which can be used to establish proper-
ties of the full TFTP system from properties of a single voter. This work is sufficiently
established that we feel a formal mathematical proof of the approach could be given.
It is a result which will be particularly important in the future development of models
which include more detail about the operating mechanisms of their components. It
has already assisted in the rest of this work.

* We have presented models of the FTP consistency algorithm which include explicit
timing information in both synchronous and semi-asynchronous models. These models
include sufficient information about the communication mechanism to investigate the

need for non-blocking and sacrificial buffers. We feel that these models approach theI "Synchronous replicated" and "Asynchronous distributed" views of [1], although they
still involve significant abstraction from the way in which the processing and voting
elements operate, and the issue of establishing co-ordinated global timing has still toI be addressed in detail.

13

SMoving toward a less abstract m odel bearing a closer resem blance to the im plem en-
tation, we have gained significant understanding of the problems faced in several key
areas. These include:

o tolerance of transient faults,

o recovery after transient errors, and

I o thebenefitsto begained fromtemporal redundancy andpermuted scheduling.

The modeling which we have completed in this area is still highly abstract, but it
provides important framework elements, and highlights those areas which place addi-
tional emphasis on new theories and tools.

The resulting document is being submitted to Draper for comment, and the models will be
revised as necessary in the light of feedback.

3 References

[1] N.A. Brock. Real-Time Scheduler: Natural Language Problem Statement. Technical
report, Charles Stark Draper Laboratory, Inc., 1994. Deliverable D2.1 of SBIR N00014-
93-C-0213, in [3].

[2] J. Davies. Specification and Proof in Real-Time Systems. Programming Research Group
Technical Monograph PRG-93, Oxford University Computing Laboratory, Oxford, Eng-
land, 1991.

[3] M.H. Goldsmith et al. N00014-93-C-0213: Second Quarterly Report. Technical report,
Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn, AL 36831-3004,
1994.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, New Jersey, 1985.

[5] G.M. Reed and A.W. Roscoe. A timed model for communicating sequential processes. In
Proceedings of ICALP'86, LNCS 226. Springer-Verlag, 1986. Also appears in Theoretical
Computer Science 58 (1988) 249-261.

I

This is Release 1.0 of this document, last modified by Michael Goldsmith at 17:50:08 GMT on December 16,
1994.

14
I

I

I Inside FDR 2

P.H.B. Gardiner M.H. Goldsmith

Formal Systems (Europe) Ltd
Formal Systems Design & Development, Inc.

December 16, 1994

I
3 Summary

This document introduces the internals of the second-generation of the FDR tool.

I iFailures-Divergence Refinement

Failures-Divergence Refinement is an algebraic property. that may hold between two ab-
stract processes. It is by checking whether this property holds between two state-machine
descriptions - and helping to determine why not, in the case that it fails to hold - that
the Formal Systems (Europe) Ltd tool FDR operates. Both CSP and its theories prove
remarkably well-suited for this kind of mechanical model-checking analysis for a variety of
reasons:

f o the semantics, and equivalence, are based around the idea of refinement;

e the ideas of parallel composition and hiding are separate, so that multiple processes
can synchronize on events and enforce constraints, and hiding can be used as abstrac-
tion;

9 CSP includes a wide range of operators, both ones representing real modes of con-
structing processes and ones which, while pointless or difficult to implement, are useful
in building specifications.

These have meant that it has been possible to build a fast refinement checker which can beI used for the great majority of correctness proofs one is likely to want, and that the language
is able to represent complex systems succinctly and clearly.3 This is an inter-company report intended as an adjunct to Deliverable D1.2 in the Office of Naval Research
SBIR Project N00014-93-C-0213 Embedded Transputer-based System Design. Much of Section 1 is derived
from the fuller discussion of model-checking CSP in [7].

I
I

I
5 SBIR/FDR2/2 Release 1.0

3 1.1 Models of CSP

The standard model for (untimed) CSP is the failures/divergences model, where each process
is represented by two sets of observable behaviors:

e failures are pairs (s, X) where s is a finite sequence of actions which the process can
perform (a trace) and X is a set of events it can refuse after s;

I s divergences are finite traces after which the process can perform an infinite sequence
of consecutive internal actions.

A more operational view of CSP (and other process languages) uses the notion of transition
systems. The model is expressed as a transition relation, -- , which relates process states
to their possible actions and the states which result from performing those actions. If a
process P can perform an action a and subsequently behave like Q we write P -a Q. If
the action is internal (and therefore independent of the process's environment) we write
P -r Q, as in CCS and similar languages. Models of this form can be view as graphs whose
nodes are processes and whose (labeled) arcs represent actions. Because such structures
can be represented and manipulated efficiently, this representation is very attractive for
mechanized analysis. The actual model used does not alter the results of any analysis,
because a congruence exists between the two frameworks. Consequently we will tend to
use the transition graph representation of processes for mechanical manipulation while the
observational model still motivates and guides the underlying theory.

We will therefore concentrate on deciding questions about finite directed graphs where
all edges are labeled with an action, either r or visible. These systems are called finite
labeled transition systems.

1.1.1 Refinement

We say that a process P with failures F and divergences D refines another, P' with ob-
servations FP and D', if and only if any observation possible for P is also possible for P'.
Formally, we write

P'EP iff FCF' and DCD'

I This containment can be used in a number of ways:

* It implies that any trace of P must be a trace of P'. If we consider P' to be a
specification which determines possible safe states of a system, then we can think of
P' E P as saying that P is a safe implementation: no wrong events will be allowed.

* Having included the refusal information allows us to constrain the events which an
implementation is permitted to block as well as those which it performs, and thus to
capture liveness properties.

3 * Further, using divergence gives two major enhancements: we may analyse systems
which have the potential to fail (including failure by livelock), and assert that failure
does not occur in the situations being considered, and we may also use divergence in
the specification to describe "don't care" situations.

36

1
5 SBIR/FDR2/2 Release 1.0

3 Important facts that are exploited by FDR include the following:

1. The least process under the refinement order, I_, equates to any process that can di-
verge immediately (i.e., without performing any visible actions first), and equivalently

to the most undefined process.

2. The refinement order is complete and its maximal elements are the deterministic3processes: divergence free and, after each trace s, only able to refuse those events
that it cannot communicate after s.

3. Each standard CSP operator can be defined as an operator over sets of failures and
divergences. Using the refinement order and least fixed points for the semantics of re-
cursion gives a denotational semantics that is congruent to the operational semantics.

1 Another process of particular interest is that which can exhibit any trace and refusal com-
bination, but does not diverge. This process, CHAOS, is refined by any non-divergent (i.e.
livelock free) process.

In practice, the statement Q C P states that P can never be observed to behave in a way
not allowed by Q. We thus tend to term Q the "specification" and P and "implementation".
In other notions of refinement we might term Q an abstract and P a concrete model, andI indeed CSP refinement will support a step-wise development style.

1.2 Mechanical Verification

We now consider how we might check a statement of refinement (like those above) mechan-
ically. The expressive power of the CSP language is such that not all such problems are3 decidable, so we must restrict our range of problems to some practically useful set.

1.2.1 Tractable Problems

For simplicity, in the original version of FDR it was possible to deal only with processes
whose operational semantics are finite state. It is theoretically feasible, by exploiting some

form of lazy evaluation, to relax that restriction on the specification (left-hand) side; FDR 2
is developing support for this1 . This means that, as the operational semantics is unfolded,
only finitely many process terms are generated. Thus,

I P = a -- ((b --* STOP) D (c --+ P))

is finite state, but on the other hand,

Q = a -* (Q III (b -- STOP))

is infinite-state, and fundamentally so since it is a process which can always communicate

a, and will communicate b provided this will not make the number of b's so far exceed the

'This is desirable so that, for instance, a most-nondeterministic buffer, with no preset bound on its
capacity, can be used to represent the property "is a buffer"; while it is usually quite simple to calculate a
bound on the buffering of a system, it is an inelegant complication of the specification to be required to.

37

I
I SBIR/FDR2/2 Release 1.0

number of a's. There are some simple rules to help determine what classes of CSP process
are likely to be finite state.

* 1.3 Checking strategy

Our approach to actually checking the refinement is divided into two parts: normalizing
the specification, and then checking the implementation against the resulting normal form.
The reasons for this division and the mechanisms used in each phase are outlined below.

3 1.3.1 Normalizing a transition system

The transition systems arising from CSP descriptions typically contain a high degree of
nondeterminism, in the sense that after any trace s of visible actions there may be many
states of a system which the process might be in. This can happen both because of the
existence of invisible actions and because of the branching that occurs when a node has two
identically-labeled actions, whether visible or invisible. Any method for deciding refinement
between these systems will have to keep track of all the states reachable at the specification
side on a given trace s, since it is merely necessary than every behavior of the implementation
on s is possible for one of these. In addition, any method we devise will need a way of telling
when a large enough set of traces have been tried to establish refinement.

Life would thus be easier if there were exactly one state corresponding to each possible
trace. This can be achieved by transforming the original specification transition system to
an equivalent normal form. The idea of a normal form for CSP processes has its origins in
[2], where it is shown that each finite CSP term is equivalent to one in the following normal
form:

f smThe least defined process, ±_ is a trivial normal form;

* all others take the form

IHAEA x : A -- P(x)

for A a convex set of sets of events such that U A G A, and each P(x) a normal form5 which depends only on x, not on A. 2

As an example, we will normalize the a 3-place (data-abstracted) buffer process B3 defined:

3 B3 = COPY > COPY > COPY

where
SCOPY = in --+ out -- COPY

(The operator '>' is a form of parallel composition that connects the out channel of the
left-hand argument to the in channel of the other, and hides the result.) The transition
system of each this process, and the corresponding normal form, is shown in Figure 1. B 3

2 This means that A can be represented effectively by its minimal elements (the minimal acceptances of

the process, which axe the E-complements of its maximal refusals), together with the maximum element (its
initials).

38

U
5 SBIR/FDR2/2 Release 1.0

I I

0

I
I F t

I

3 Figure 1: A simple normal form

has 8 states, corresponding to each of the component processes being in state COPY = E
I or out .-* COPY = F. Its normal form has 4 states, one of each possible number of "items"

this "buffer" is holding (0,1,2 or 3).

In actual fact, collecting together states reachable after a given trace in this way, whileI sufficient to allow our checking algorithm to proceed, does not produce a strict normal

form. In order to achieve this, we need (and FDR employs) a straight-forward compression
algorithm to merge states from the pre-normal form which actually share the same future5 behavior. (In the caeof the buffer example, the pr-omland normal formsaridncl.

_as preti-norma identcal.

The complexity of normalization Given that the pre-normalization process builds aI transition system over the sets of nodes from the original system, there is the possibility that
the normal form will be exponential in the size ofathe original system. This can indeed occur,as can be shown by a number of simple examples. Fortunately there are two mitigating
factors that work in our favor, making this particular obstacle mo-orwr-less disappear.

1. "Real" process definitions simply do not behave as badly as the pathological examples.aloIn practice it is rare for the normal form of a naturally-occurring process to have

more states than the original transition system. Indeed, the normal form is frequently

significantly smaller, offering scope for intermediate compression.1 2. It is only the specification end of the refinement that we have to normalize. In practice

the simpler process is usually that one rather than the implementation. Frequently,
Sindeed, the specification is a representation of an abstract property such as two eventsIacalternating or deadlock-freedom, and has a trivial number of states. One would usu-

ally expect that a process playing the role of a "specification" is reasonably clearly
sand cleanly constructed, with understandable behavior. These aims are more-or-less

I

U
SBIR/FDR2/2 Release 1.0

3 inconsistent with the sort of nondeterminism that leads to an explosion in the normal
form.

3 1.3.2 Checking refinement

Once the specification end of a refinement check has been normalized, the following two3 phases are necessary to establish failures/divergence refinement.

1. Establish which states of the implementation transition system are divergent, marking
them as such.

2. Model-check the implementation, thus marked, against the normal form.

A state P is divergent if, and only if, the directed graph formed by considering only 7-

actions has a cycle reachable from P. There are two standard algorithmic approaches
to this problem: computing the transitive closure of the graph or taking advantage of the
properties of depth-first search (DFS). The FDR tool uses variations on the latter approach.

In the model checking phase we have to discover whether all the behaviors of each
implementation state are allowable in all the normal form states such that they have a
trace in common. This is done by exploring the cartesian product of the normal form and
implementation state machines. Each state in the product is expressed as a pair (v, w)
where v is a state in the normal form and w is a state in the implementation.

Conceptually, we maintain a set of checked pairs and a sequence (pre-ordered by the
length of trace) of pending pairs; initially the former is empty and the latter is the singleton
of the pair of initial states of the two systems. Until it is empty, we repeatedly inspect pairs5g from pending. The pair (v, w) checks if

1. the normal-form state v is divergent; or

2. the implementation state w is non-divergent, and

(a) the set of initial actions of w is a subset of those of v, and

(b) either w is unstable (i.e., it has a r-action), or the set of actions it refuses (the
complement of its initials) is a subset of one of the maximal refusals of v.

If the pair does meet these conditions, we add it to checked and proceed as follows: the set
of all pairs reachable from (v, w) and not in checked is added to pending. A pair (v', w') is
reachable from (v, w) if either

1. w---) w and v -= v'; or

2. w w' and V) vi for a 7r.

3 Note that whenever w -i- w,, then this v' must exist and be unique.
If a pair is found which fails to check, then the proposed refinement does not hold. If the

above process completes without finding such a pair, then refinement does hold. In order
to simplify debugging, we are now in a position to report the shortest possible sequence

I10

3 SBIR/FDR2/2 Release 1.0

of actions that can lead to such an error, when one is found. This is achieved by the
breadth-first search (BFS) implied by the ordering on pending.

If no error is found, one can justify the claim that refinement always holds either op-
erationally or abstractly. Operationally, if refinement fails, then it must hold because the
implementation has some behavior that is banned by the normal form. There is therefore
some sequence of actions which exhibit this, potentially bringing the implementation into
some state w where it can behave illegally. It is clear that the unique normal form state v
corresponding to this trace is such that (v, w) will be found in the search above, leading to
a failure to check. Abstractly, one can show that the refinment checking process is simulta-

neously formulating and proving a sort of mutual recursion induction over the state-space
of the implementation.

3 1.4 Implementation Issues

1.4.1 Machine-Readable CSP

3 CSP has been, as a "blackboard" language, a rather variable notation, with some parts
being used differently in different schools and some parts being rather under-defined. Since
it is written, essentially, as a series of algebraic expressions using a variety of peculiar-I looking operators, it does not look like the sort of programming language one usually types
into a computer.

FDR emerged as part of a general effort to make tools available for CSP. There was
thus an obvious need for a standardized syntax, parser and type theory/checker for the
language. The work3 to develop these has been led by J.B. Scattergood [8], and has gone
on hand-in-hand with that on FDR which, together with several other tools, uses them.

The objective of this work has been to preserve as much as possible of the form, spirit
and flexibility of the blackboard language, while adding sufficient structure to allow for
standardized mechanical interpretation. For portability, it was decided to do all of this
within the confines of an ASCII syntax - where the chief compromise is in the representations
of the operators - though this does not preclude the building of more elaborate display and
printing facilities on top of it.

Most of the decisions in the design of the syntax revolved around the sub-process objects
such as events, their atomic components and parameters to processes (which can be thought
of as process state). Unless we change the CSP semantics of termination and sequencing,

the treatment of these objects is necessarily declarative: there is no assignment or similar
construct that can change the value of an existing variable within its scope. It also affects
the style of CSP programs, which become scripts of definitions (of a mixture of processes

and other objects) in the style of functional programming languages such as Haskell and
that of [1].

More specific features of the machine-readable syntax include:

3 The CSP parser and typechecker were produced under an ONR-sponsored project at Oxford University,
and are freely available to anyone interested in producing tools related to CSP.I

I

U
I SBIR/FDR2/2 Release 1.0

1. In [41, every process has an intrinsic alphabet, with these being important for the
semantics of the parallel operator. A pair of processes must synchronize on events in
the intersection of their alphabets. We have found it more convenient to supply either
these alphabets directly when using the parallel operator or, more usually, to define
the interface set of each parallel composition: P 11 Q, written P [IAI] Q in ASCII,
makes P and Q synchronize on elements of A. A

32. Each event is made up from a constructor representing its name and a number of
"data" components from a fixed list of types (which may be empty). Each "channel"
thus has a possibly trivial cartesian product type. The events are formed using infix
dots, sometimes by ? representing input and binding the identifiers to their right until
the occurrence of a ! representing output. Thus the event a. 1?x! y is a communication
over channel a, whose first and last components are fixed and the middle one is open
and will bind x to the value input. The original FDR demands that all channels used
are specifically declared through a pragma mechanism; as the parser acquires a type3 system, this will also be supported in FDR 2.

3. The syntax has specific support for booleans, numbers, sequences, tuples and sets.
Any undefined identifiers (ones not bound to anything specific) are treated as tokens

* or constructors introduced by the user.

S2 Structure of the FDR2 core

The second-generation implementation, FDR 2, differs in several significant respects from
the original. These are mainly aimed at increasing the flexibility and scope of the tool.

e The language of implementation for (at least) the computation and memory intensive
tasks - previously carried out by C programs - is now C++.

o Inheritance and virtual methods allow multiple representations of processes to
co-exist and interact without necessitating multiplication of the coding of the
high-level algorithms involved.

o Abstract interfaces permit link-time extensions to the repertory of representa-
tions without necessitating modifications to the existing source, recompilation or
even access to anything other than interface header files.

The two state-machine descriptions supported by FDR were an explicit representation
of a (pre-) normal form (the output from normal and the first input to the various
refine programs) and moderately compact encoding of (potentially parallel-) machine
transitions between binary state vectors, with "don't-care" (and "leave unchanged")
masking of components not taking part in the synchronization.5 These are both supported (interchangeably) in FDR 2, but in addition two families
of representation address the problem (discussed in [51) of the multiplied numbers of
transition rules arising where two or more components synchronize on an event which
they can each perform in a number of states.

5 12

I

U
3 SBIR/FDR2/2 Release 1.0

o Each syntactic operator (especially, but not necessarily only, those which FDR
regards as "high-level") can be regarded as defining a new representation, where
the arguments (both process and non-process) are recorded as data members of
a new derived class, and where the methods yielding the operational semantics
of the constructed process infer its behavior from those of its components.

o As a generalization of this, a "supercombinator" can be compiled from a tree of
.such operators, encoding all the information necessary to infer the whole opera-

tional behavior from the ability of the ultimate components to engage (or refuse

to engage) in particular events in their current state.

In each case, the size of the representation is reduced to approximately the sum
(rather than, in the worst case for a state-mask machine, the product) of the sizes
of its "leaf" machines. The time to calculate the results of the semantic methods is
similarly reduced.

"" While the failures-divergences model is the canonical semantics for CSP, in many
circumstances the distinctions it draws are finer than is needed to capture the intended
property. Safety properties, in particular, depend only upon the possible traces of
the specification and implementation, and discount the information that failures give
about the presence or absence of nondeterminism. Similarly, in cases where other
reasoning gives grounds for believing some sort of fairness condition holds, it is correct
to ignore stabilizable divergence [6].
Rather than coding separate, but very similar, routines to carry out normalization and
refinement-checking for each of the models in the hierarchy, it is equivalent (and not
noticeably less efficient) to implement the retract mapping which projects a process
in the failures-divergences model onto the more abstract model and brings it back
through a canonical embedding. Applying such model-changing transformations to
both sides4 of a refinement query yields the answer to the more abstract question.

" A wide range of compression techniques can be applied to labeled transition sys-
tems: factorization by weak or strong bisimulation equivalence, and collapsing r-loops,
chains or diamonds, for example. Applying these to all or part of the specification, or
to carefully selected components of the implementation, promises to yield very signif-
icant reductions in the complexity of deciding many refinement questions (this is one
of the areas of research currently under active investigation).

" While the more structured representations of processes undoubtedly are more com-
pact, they necessarily carry a degree of computational overhead relative to a fully
tabulated (0(1) access) machine. Thus where space allows - which almost certainly
includes most genuine "leaf" processes in a highly structured machine - it is desirable

4 1t might be adequate semantically to apply, say, the retract which maps any process to the most non-
deterministic one with the same trace set only to the specification side; but to do so to the implementation3 as well simplifies the process which needs to be checked.

313

U
SBIR/FDR2/2 Release 1.0

to evaluate the transition system once and for all. This too fits comfortably into theIFDR 2 framework.

1 3 Fundamental types

In order to be able to produce customized versions of FDR 2, a certain grasp is required
of the classes and methods forming the internals of the C++ implementation. Of these,
undoubtedly the most important is the class ISM (Indexed State Machine), but some other

* ancillary classes are required.

3.1 Type Event

Currently, the only supported type of Event (representing the labels, visible or invisible, on
the transition relation) is a simple integer. The header file event. hpp declares

typedef int Event;

int is.tau(Event);

3 Event mk-tau(Event);

These functions satisfy is-tau (mk-tau (e)) == 1 for every e. For backwards compat-
ibility with FDR, is-tau (999) == 1 is also guaranteed, but apart from these cases
is-tau (e) == 0.

3 3.2 Class Node

Class Node is essentially an opaque class with equality and ordering predicates. Its primary
use is to denote a particular state within a state-machine representation, as will become
clear in Section 3.4.

It also supports methods for storing any data it contains efficiently in memory and
later retrieving it; this is important as sub-classes allow tuples and sums of nodes to be
embedded in the same space (to reflect the state of compound machines in the state of their
components), as well as scalar values and the bit-vector representation used for FDR-style
state-mask machines.

Monadic ISM to ISM constructors can safely use the Nodes of their argument process
without worrying about any internal structure. An appropriate blend of reference count-
ing and deep copying is used to maintain a consistent relationship between construction,
assignment and deletion of Node objects.

3 3.3 Classes Set<T> and Iter<T>

A templated family of Set classes is provided: among instances of particular importance
are Set<Node>, Set<Event> and Set<Set<Event>>, as we will see in Section 3.4. Sets too

are arranged to behave sensibly with respect to assignment and modification.

314

U

SBIR/FDR2/2 Release 1.0

ifThe public interface allows the standard operations:

template<class T>
class Set {

friend class Iter<T>;

public:
int emptyO) const;
int cardinalityO) const;

i int member(const T&) const;

void add.singleton(const T&);
if void add(const Set<T>&);

friend Set<T> setunion(const Set<T>&, const Set<T>&);
friend int subset(const Set<T>&, const Set<T>&);

friend int proper.subset(const Set<T>&, const Set<T>&);
friend Set<T> singleton(const T&);
friend Set<T> setinter(const Set<T>&, const Set<T>&);
friend Set<T> setminus(const Set<T>&, const Set<T>&);

3 as well as con- and de- structors, assignment, comparison and output operators.
The approved method for extracting the members of a set is to use an iterator of

class Iter<T>. This makes efficient access to the internal representation of the Set object
available through a simple interface:

template<class T>
class Iter

public:
const Iter& operator=(const Set<T>&);
int goingo) const;

3 void nexto;
const T& hereo) const;

I;The use of this class is illustrated by the following invariant:

Set<T> s = ... , t;

for (Iter<T> i=s; i.goingO; i.nexto))
t.add.singleton (i.hereo);

3 establishes s -- t.

315

I
SBIR/FDR2/2 Release 1.0

It may be noted that a Set<T> is effectively sorted with respect to (a required overloading of)
the function int compare (conast T&, coast T&) and the corresponding Iter<T> releases
them in ascending order without duplicates across calls of next 0) (so that

I Iter<T> i = s;
T a = i.hereO;
i. next () ;
T b = i.hereo;

establishes compare(a, b) < 0).

3.4 Class ISM

The ISM class provides an abstract simulation interface for the operational semantics of a
state machine. There are four fundamental questions which can be asked of a CSP process:

S1. Is it divergent?

2. What events can it engage in?

U 3. What degree of nondeterministic choice is it allowed among these events?

4. What range of processes can it evolve into after engaging in some particular event?

3 This last question might naively be answered by returning a set of processes, each repre-
sented as a rooted transition system perhaps; and in general this may be the best which
can be achieved. The algorithms set out above, however, rely on being able to determine
whether a particular state has been seen before; and in the finite-state universe (and the re-
laxations of finiteness that we will allow) a more efficient encoding is possible. The property
of its representation which distinguishes an ISM from a more general state-machine is that
the object represents an entire machine, with the behavior of each state made accessible
through a (hopefully relatively small) name of class Node.
The class ISM itself is abstract: it provides an interface of virtual functions to which par-

ticular incarnations must supply definitions, together with a number of derived functions
to which more efficient implementations may be supplied if the derived representation will
support them.

As a data-less class, it only makes sense to refer to pointers to an ISM, rather than to
objects of the base class. In order to avoid scope/extent errors, raw pointers are eschewed in
favor of a smart, reference-counting, class ISMRef. This is an instantiation of a templated
Pointer<T> (technology which underlies the other reference-counted objects already de-
scribed), which requires that its template argument be derived from a simple class Counter
(which manages the reference count, destructing the object when it reaches zero). The
operator-> is overloaded to make these smart pointers otherwise indistinguishable from
the built-in type.

1
* 1

I
SBIR/FDR2/2 Release 1.0

class ISM : public Counter
{

friend class ISMRef;
virtual NSM* viewNSMO const;

public:

II/Mandatory methods
virtual Set<Event> alphabet() const = 0;
virtual Node rooto const = 0;
virtual Set<Event> initials(const Node&) const = 0;
virtual Set< Set<Event> > minAcceptances(const Node&) const = 0;
virtual int divergent(const Node&) const = 0;
virtual int markedDivergent(const Node&) const = 0;
virtual Set<Node> afters(const Node&, const Event&) const = 0;

//Derived methods
virtual Set<Node> states() const;
virtual Set<Node> tauClosure(const Set<Node>&) const;
virtual Set<Event> powerInitials(const Set<Node>&) const;

// tau not in powerInitials(s)
virtual Set< Set<Event> > powerMinAcceptances(const Set<Node>&) const;
virtual int powerDivergent(const Set<Node>&) const;
virtual Set<Node> powerAfters(const Set<Node>&, const Event&) const;

m /Allowed not to define an output routine, but default is then error
virtual void write(ModeOut&) const;

* The intended interpretation of the mandatory methods is as follows:

e alphabet()

3 A set of events which includes all the non-r labels on the transition system being
encoded. It is useful only to provide an approximation to E, the domain of discourse,
if debugging messages are desired in terms of refusals, rather than acceptances.

I root

A process is fully represented by an ISM (the transition system) together with a
Sdistinguished Node marking which state within it is "current". The initial starting

point is encoded within the machine and accessed through this method.

* initials(n)
The set of labels on any arc from node n in the transition graph.

In encodings which have not eliminated r-transitions, 7-s (that is, events e for which
is-tau(e) == 1) will occur in this set if they label such arcs.

*17

I
3 SBIR/FDR2/2 Release 1.0

. minAcceptances(n)

A set of pairwise-incomparable subsets of initials (n), representing combinations of
visible events which cannot be refused by node n.

In a pure transition system, this will always be either empty (if the node has a r
transition) or the singleton set {initials(n)} (if it does not); in a normal-form rep-
resentation of a non-divergent state it will be the minimal elements of the A of Sec-
tion 1.3.1. Other representations may have both r-transitions and non-empty minimal
acceptances for the same node: this represents that other r-transitions to stable states
in the pure system have been collapsed onto the node at this level of representation.

No r occurs in any element of the set.

* divergent(n)

Non-zero if the state represented by node n is divergent (that is, is reachable by a
trace which is a divergence in the observational semantics).

I markedDivergent(n)

Non-zero only if divergent (n) non-zero, and whenever this holds and there is neither3 a cycle of r-arcs nor another markedDivergent node --reachable from n.

This is not strictly part of the necessary simulation interface, but is a concession to
efficiency. Some implementations may have recorded annotations on the divergence
of nodes; others will need to explore 7-connected components of the transition graph
looking for cycles. In the case of a machine built by hiding events of an underlying
machine, for instance, both these may contribute: the underlying machine may have
divergences not deducible from its transition graph (it may be normalized, for ex-
ample), while the hiding may introduce new 7-loops. But if determining whether a
node of the underlying machine is divergent itself involves r exploration, inquiring of
each node might result in a quadratic number of such inquiries, if only the divergent
method were available. This method allows the two questions to be separated effi-
ciently.

Some implementations may also cache the deduced divergence of their nodes as they
are calculated; they are free to return that information through this method.

3 . alters(n, e)

The set of all nodes which are at the end of an arc from n labeled by e in the transition
graph, including -r arcs if appropriate to the level of the implementation. For any
reachable node n, and any e in alphabet(), alters (n, e) is non-empty precisely if
e is a member of initials (n).

If n has not arisen directly or indirectly from calls to the root and alters methods
of the machine in question, the results of this (and all the other methods taking a
Node argument) are undefined. Similarly, no guarantees are made if e lies outside the5 universe of discourse.

318

I
3 SBIR/FDR2/2 Release 1.0

The derived methods are values which most machine types will calculate in the same way
from their instances of the mandatory methods, but which some may be able to evaluate
through efficient short-cuts. The default definitions supplied with this base class, however,5 are available and often adequate.

* states(0

The set of all nodes reachable by a finite series of calls to alters from the root node;
calculated by exploration. (Machines which use an initial segment of the natural
numbers for their nodes and which know the high-water mark can obviously finesse

* this!)

a tauClosure(s)

The set of all nodes reachable by a finite sequence of r-arcs from any node in s. (For
machines which have eliminated --transitions, this is simply s.)

* powerlnitials (s)

The union of initials (n) for each node n in s, with r removed (since this is designed
for application to the results of tauClosure).

I * powerMinAcceptances (s)

The minimal elements of the union of minAcceptances (n) for each node n in s.

I * powerDivergent (s)

Non-zero if divergent (n) is non-zero for any n in s.

1 e powerAfters(s, e)

The union of afters(n, e) for each node n in s.

I The private viewNSM method is discussed in the next section. Discussion of the write
method is deferred to Section 3.6.

I 3.5 Class NSM

class NSM : public ISMI {
friend class NSMRef;
NSM<Event, Node>* viewNSM() const;I public:
// ISM members defined in NSM
virtual Set<Node> afters(const Node&, const Event&) const;

// Version of 'alters' giving unique result.
virtual Node after(const Node&, const Event&) const = 0;

*19

I

3 SBIR/FDR2/2 Release 1.0

3 Another abstract class derived from ISM is NSM (Normalized State Machine) which gives the
interface to normal-form machines.

There is essentially only one difference between them: it is known a priori that each
event labels at most one arc from any given node, so it is reasonable to implement a
method after(n, e) yielding the unique node reached from n by an e-transition (for any
e in initials(n)).

There is no reason why a normalized machine cannot be viewed as an ISM, and the normal
C++ conversions allow the casting of an NSM* up to an ISM* (or in our case, from a "smart"
NSMRef pointer to an ISMRef). To go the other way, however, is not so straightforward;
it is certainly desirable to be able to recognize a normalized machine, rather than have to
re-normalize it, but it is not safe to allow arbitrary machines to be viewed as NSMs. The
viewNSM method provides a technique for allowing this "downcast" precisely when it is safe:
the default definition in ISM is to return a null NSM*, whereas the specialized definition in
NSM is as the identity function. This whole is encapsulated in two friend functions to
ISM~ef,

IeNSMRef viewNSM(const ISMRef&);
int null(const ISMRef&);

Sso that null (viewNSM(ism)) is zero just when ism is an object of a class derived from NSM.

3.6 Input/output mechanisms

FDR 2 incorporates a library of routines providing access to structured files, in either text
or binary representations. These include methods for reading and writing integers and pairs
of integers, sets of the same, bit-vectors and tagged lists.

class Modeln : private ifstream

public:
void io-error(char*);
void begin-list (Tag);
int in-listo;
void end-listo;
int is-eol();
int read-keyo;
int read-tag(Tag);

int read-into;
Bits read-rootbits(int*);
Bits read-bits(int);
Pair<int,int> read-pairint ();
Set<int> readsetinto;
Set<Pair<3ut,int> > read-setpairint 0;

320

1
SBIR/FDR2/2 Release 1.0

m //Modal output. Mode is set when constructed.

class ModeOut : private ofstream

public:
void indento;

void exdento);
void write.indento;

void start-.listo;
void incr.listo;
void finish.listo;
void set-eolO;
void write.key(int);

void write-tag(Tag);
void write.int(int);
void write-rootbits(const Bits&);

void write.bits(const Bits&);
void write.pairint (const Pair<int, int>&);
void write.setint(const Set<int>&);
void write.setpairint(const Set<Pair<int,int> >&);

Each implementation class of ISM should provide a definition of the public write method,
laying out non-process data in a way it can recover and simply using the write methods
of any process data members it may have. In order to make the textual representation
easier for humans to decipher, each "line" should start with a call to write-indent().

The global indentation level can be increased (before the [virtual] recursive calls to the ISM
write method, for instance) by indent 0, and reduced (on return) by exdent (); these are
no-ops in binary mode.

In addition, it should define a private class-static method

static ISMRef class: :read(ModeIn &in);

which reinterprets the non-process data and can use a (magic) call to Fob: :retrieve (in)
to recover each process member. In order to enable this technology, which provides link-time
registration of new derived classes of ISM, the implementation must also define a class-static
member of class Fob, and give its definition by a construction from the read method, thus:

3 Fob class: :fob ("name", class: :read);

where "name" is chosen to be mnemonic of "class" and unique among all implementations
m likely to be encountered (any duplication results in a load-time error).

321

U
SBIR/FDR2/2 Release 1.0

* 4 Status and future developments

At the time of writing, FDR 2 is not yet available as a fully integrated product. The
infrastructure, core normalization and refinement functionality and many of the compression
techniques form a library, against which appropriate main programs may be linked. The
primary functions, corresponding to the FDR programs normal and refine/ref ine2/
ref ine2d/etc, are currently supported as fdr2norm and fdr2 respectively. Compression
routines, too, have simple file-to-file interfaces.

A new module is available for incorporation into the existing Standard ML front-end
engine fdr, which allows processes to be written to file in the new format. CSP "high-level"
operators are by default mapped into structured files which give rise to hierarchical objects
of the corresponding derived classes.

I 4.1 Debugging

In the case that a refinement check throws up a negative answer, fdr2 yields a witness
behavior which is a (minimal) counter-example to its truth. As with refine, this may be
any one of three kinds:

* a divergence of the implementation which is not one of the specification;

* a non-divergent trace of the implementation which is not one of the specification;

I * a trace of the implementation leading to a stable state where the minimal acceptances
are not all (point-wise) supersets of any of those of the corresponding state of the
specification (and so, in FDR terms, the maximal refusals are disallowed).

The difference between the FDR 2 case and that of FDR is twofold:

e the state information (potentially on both machines, but particularly on the imple-
mentation) may have more complex structure than the (implicit) tupling of FDR's
state vectors

I a on the other, there may well be structure underlying the implementation, which the
user will want to analyse the erroneous behavior with respect to, which has been lost
through compression or enumeration optimizations.

The additional decomposition (using virtual methods instantiated by the operators) and
recalculation, respectively, of this information is supported within the FDR 2 framework.

What remains is to provide a user interface to this debugging functionality. This most
naturally moves from the Standard ML engine (which in FDR is responsible for decompos-
ing the behavior across the entire "high-level" syntax tree, and supplying this informationIto the Xl graphical interface, but which is also planned to be obsolescent in the medium
term, as discussed in the following section) into the graphical interface itself, with a more
lazy, user-driven, approach.

This development is anticipated early in 1995.

*22

I
SBIR/FDR2/2 Release 1.0

4.2 Integration with parser/operational semantics engine

The outputs of the ONR-sponsored academic project at Oxford will go further than simply

a parser and type-checker for the ASCII language. A tool with the ability to evolve the

operational behavior of a process term is clearly a good candidate in the medium term
for a replacement of the current Standard ML engine, fdr. In particular, we expect to be
able to adapt it both to generate a closed-form of the "leaf" processes, and to "compile"
the "supercombinator" representations referred to in Section 2, as well as more structured
operator-oriented trees.

This development is anticipated in mid to late 1995.

5 Conclusion

I Although somewhat delayed relative to internal plans, FDR 2 shows every sign of being
worth the wait. In particular, the care which has gone into developing clean interfaces and

flexible infrastructure makes complex extensions extremely easy to program. For example,
each of the following (required for other projects) took substantially less than a day to code:

"" a program to calculate the set of events which label arcs from nodes which are actually
reachable by a process (sometimes written o(P));

" an operator which normalizes a (potentially infinite) process lazily, as nodes in its

* normal form are first visited;

"* a program to identify classes of nodes in the normal form which are visited in the
* course of a refinement check.

There are also a number of refinement problems which were outside the abilities of FDR3 which have submitted to the more structured approach of FDR 2.

References

i [1] R.S. Bird and P. Wadler. An introduction to functional programming. Prentice-Hall,

1988.

1 [2] S.D. Brookes. A model for communicating sequential processes. D.phil., Oxford Univer-

sity, 1983.

3 [3] M.H. Goldsmith et al. N00014-93-C-0213: Second Quarterly Report. Technical report,
Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn, AL 36831-3004,

1994.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, New Jersey, 1985.

I
*i2

I
SBIR/FDR2/2 Release 1.0

[5] D.M. Jackson and M.H. Goldsmith. Requirements for Refinement Checker Development.
Technical report, Formal Systems Design & Development, Inc., April 1994. Deliverable
D1.1 of SBIR N00014-93-C-0213, in [3].

1 [6] L. Jategoankar, A Meyer, and A.W. Roscoe. Separating failures from divergence. In
preparation.

[7] A.W. Roscoe. Model-Checking CSP. In A Classical Mind, Essays in Honour of
C.A.R. Hoare. Prentice-Hall, 1994.

[8] J.B. Scattergood. A basis for CSP tools. Oxford University Computing Laboratory
Qualifying Dissertation, 1993.

I
I
I
I
I
I
I
I
I

This is Release 1.0 of this document, last modified by Michael Goldsmith at 17:50:28 GMT on December 16,
1994.

S•24

I

I
I

* A CSP Priority Operator for FDR 2

Prototype Software for Discrete Real-Time Extensions to FDR

Michael Goldsmith

Formal Systems Design & Development, Inc.

December 16, 1994I

Summary

This document describes some theoretical aspects of using an untimed but prioritized
dialect of CSP to model discrete real-time behavior, and describes a prototype FDR 2
operator definition (of the kind described in [1]) giving implementation to refinement
over the new dialect.

*1 Discrete real-time modeling

As discussed elsewhere ([6, 3, 5]), many of the problems with a naive approach to modeling
the passage of time by the occurrence of some clock event (such as the tendency to detect
pathological behavior where in fact none should arise, particularly where the system relies
upon time-out constructs - since the symmetry of external choice allows the system to prefer
the clock event causing the time-out even when the "desirable" events are also available)
can be averted by judicous appeals to a notion of priority. Here we flesh out those notions.

Recall that, rather than the occam-style solution of a prioritized constructor (such as
PRI ALT) to support the notion of priority and allow the programmer to force the system to
"make progress" if possible, we are developing a theory which attaches priority to the events
themselves: a (possibly partial) order between events such that the operational semantics of
a process allows an event to occur only if all strictly higher priority events are not enabled.
Progress has been made in refining the earlier commercial collaboration between Draper
and Formal Systems (Europe) Ltd which tried out some of these notions (picking a set of
"I"urgent" events to have priority over the clock ticks) with considerable success; the relation
of an intuitive notion of the desired operational behavior with objects in the semantic space
needed to reason about refinement were there entirely ad hoc and experimental, with little
theoretical justification.

This is the textual component of Deliverable D1.2 in the Office of Naval Research SBIR Project N00014-1 93-C-0213 Embedded Transputer-based System Design.

i
I

D1.2 Release 1.0

3 As we have seen, the main obstacle to connecting the desired operational behavior to
abstract semantic objects is that the standard semantic spaces are not sufficiently rich,
at least for a denotational and compositional description. Among the algebraic properties3 which hold for untimed CSP is one that we may call uncertainty: that when, and how
much, nondeterminism is resolved at any particular point in the evolution of a process is
something which cannot be determined by observation. A concrete example of this is that
the two processes

P = (a--Stop x---x--x Stop) nx-- y--.Stop

Q = (a -Stop x - y-- Stop) n x x --*Stop

are equal, both behaving indistinguishably from

R = a--Stop x --+ (y --* Stop n x --* Stop)

If we are in a world where a events are preferred to x events, these three are operationally
distinct: provided the environment is prepared to allow both events to occur, if an x happens
it must be because the nondeterminism is resolved in favor of the second component (of P
or Q; if a is not somehow blocked, R will always cooperate in taking the first branch); andI their respective subsequent behavior is different. P II P can always (and only) do a y after
an x (when it could have done an a) and Q 11 Q can always (and only) do a second x in
the same circumstances; P I1 Q will deadlock after doing an x (if it could have done an a).

We remarked that the need for the qualifications concerning the availability of a yields
the clue to our proposed solution. In the standard model, it does not matter what other
events were allowed by the environment at the moment one happened; it is only at the point
where none of the offered events are possible for the process that more than one is observed
(as the refusal part of a failure). If a were not allowed by the environment at the start of
the process, then all three processes again have indistinguishable behavior (as of the second
component of R); that information is not available, however, in the data recorded in the
event of an x being performed.

To rectify this, we record "historical" refusal information at each point along the trace:
not only what events occurred, but which events were at that time declined, even if on
offer from the environment1 . In addition, we will still require "final" refusal information to
record states which do not make progress on given offers.
This gives, for a given alphabet of discourse E, a semantic space

3 HT c P((E x PE)* x PE)

where each P E HT satisfies the following axioms:

I ((,0) 0 p (1)
'This is analogous to the Timed CSP solution; that language, too, does not admit convexity and uncer-

tainty laws because of the possibility of retracting offers of events, and the extended refusals of the timed
models play a similar role in allowing the past behavior of the environment to be taken into account.

*26

I
ID.2 Release 1.0

S(st, 0) E P (s, 0) E P (2)
(s,X) EPA YCX•='(s,Y) EP (3)

(s'((a, X))'t, Z) A Y C X =* (s'((a, Y))'t, Z) E P (4)

(s, X) E P A (s,X U {a}) 0 P =* (s{((a,X)),0) E P (5)

(s'-"((a, X)), 0) E P 4- (s, X) E P (6)

'I The first three are identical to axioms of the standard failures-divergences model (although
the types differ slightly); the fourth is a natural generalization of the third. Axiom 5
is the direct analogy of the standard one which ensures that any element of a minimal
acceptance is also an available initial, but in addition mandates that appropriate "historical"
observations can be recorded. Finally, Axiom 6 requires that "historical" information does
indeed correspond to a possible history.

We have remarked before that enriching this space to contain a component for diver-
gences causes no difficulty: we simply add a divergences component (of type (E x P ,)*)
obeying precisely the standard axioms (modulo the type difference). So far, however, our
expectation that, for the kind of systems we intend to model, the ability of (divergence-
free) chaos to "stop the passage of time" suffices to catch that kind of pathology, has been
positively reinforced by our experiences both in this project and elsewhere.
We are now in a position to present a semantics for a substantial subset 2 of the language:

P ::= STOP

e--+ P

JPOPI lPnP
I PuPE

P\E

I f 1 (P)

(for e ranging over E, E ranging over P E and f ranging over finite-to-one mappings -E)

into this model, allowing the desired distinction of the processes above.

FHTJSTOP] = {((),E)IECE}

.FHT e -* P]] = {(f , E) I e f E} U {((e, E)>s, E') e 0 E, (s, E') E .FHTP]P}

"FHT[P1 ED P2] = {((I,SE) I (0, E) E FHT[Pil, i = 1,2} U
I{(s, E) I s : (), (s, E) E FHTI[P1]I V (s, E) E YFHTP21}

I HTIP, nP21 = YHT[P1I IU HT IP2
2This is quite certainly sufficient, as the (finite) generalized operators and the other forms of parallel

constructor are definable in terms of these constructs. Recursion is unproblematic.

I

I

5DI.2 Release 1.0

.FHTEP1I I P2 {(s,E') I •(s, Ei): .:lfT [Pi Oi domsi > 4 doms.
V Vki: dom sio 7r (Si[ki]) = 7rl(s[Oi(ki)]),

Vj : dom s -(7r,(SU]) E E 4*

ki : dom si. 01 (k1) = j = '2 (k2),
Vj : doms, ki = supo 1{ 'l Ii' (< J}"

7r2 (s U]) fl E = (7r (Sl [k1]) U 7r2(s2[k2])) f E,
7r2(s) U E = (7r2(sI[ki]) n 7r2 (s2 [k]))U E,

E' n E =(El U E2) n E,

FHA EJEl U E (El n E2) U E}
.:FHT[P = \ l (s, E')13(so, Eo): .HT[P],¢: dom s m dom so*

V k :dom so - k E ran€0 4* 7rl (so[k]) 0 E,

Vj doms. 7ri(s i]) = 7ri (so [be(j)]),17 •-(s U]) U E = 72(SO 0[(i)]),
E'U E = Eo}

YH.• f-1T -(P)l ={(s, E) I Y OsD,f OED) E .FHTJPI I

We can also define projections on this space: one, for any priority pre-order -< between

events, gives the effect as if all events were always offered by the environment, thus finally
resolving the affect of priority on choices (and reducing the "external" world to an observer -
as much environment as necessary to control execution must be explicitly modeled and
composed into the system):

P' = {(s,X) J3(s',X') : P.
'7rI 0 S = 7r, 0
Vj : doms ° 7r2(s[U]) U {a' E I 7r,(s[jI) -< a'} = 2(s'U]),

V a : X . (s', X' U {a' : Ea -I a'}) E P =• a E X'}

A second projection obscures all interesting refusal information in the traces:

P = {(s,X)JVt<s.3(t',X'):P;a:F°
7r o t = 0 t' A t'((a, X')) < S

3(s', X'):P.

71 0 s = 0 o s' A X = X'}

The effect of this is to close up under uncertainty, and the resulting retract is naturally
isomorphic (under 4, say) to the standard failures model (simply by stripping the "histor-
ical" refusals from the traces entirely). Since this is clearly monotonic, if refinement holds
in the richer model then it will hold between images in the standard model, and any failure
to refine there will reflect a failure in the desired space; we can thus use the existing check

as a partial test for the overall result. The uncertainty retraction maps processes onto the
weakest one with the same set of everywhere-empty-historical-refusal failures; thus when
the desired specifications are themselves "uncertain" the induced check is entirely accurate.

128

I
£D1.2 Release 1.0

There are some unpleasant (but not unexpected - it has long been established thatI discrete-time analysis fits ill with compositionality [7]) interactions between these projec-

tions and the CSP operators (promoted to the semantic space). In particular, we do not
i have any of the following holding in general in the HT model:

P\E = P\E

(P \E)-ý =E

(P IIP')' P - P "IIP'+
E E

(P II P9)11 = (P 11 P"- <
E E

The last result does hold, however, when all the elements of the synchronization set are -<-I minimal. Thus events which cannot affect the availability of others behave almost normally

across interfaces of composition.I
2 Implementation for FDR 2

3 We are encouraged by this last result to put these ideas into practice, exploiting the virtues
of flexibility, extensibility and (effectively) rapid prototyping provided by the FDR 2 in-
frastructure. The obvious candidate for a first useful "operator" (in the sense of [1]) is

(P, -<) ý-* P-<; where provided P is given as a pure transition system where all rs arise from
explicit nondeterminism, not hiding, the same is true of the result and in both cases the
"historical" behavior can be deduced from its operational semantics.I In order to achieve this, we derive a new class from the abstract ISM interface (see [1, §3]):

class OpPrioISM : public ISM

private:

ISMRef p;
Mapping< Event, Set<Event> > rho;

Set<Event> restrict-by.set(const Set<Event> &inhibit,
const Set<Event> &query) const;

Set<Event> restrict-by-node(const Node &n, const Set<Event> &query) const;
Set<Event> necessary(const Node &n) const;

static ISMRef read(ModeIn &);

static Fob fob;

OpPrioISM(const Mapping< Event, Set <Event> > &r,
const ISMRef &p);

329

I

I D1.2 Release 1.0

public:
Set<Event> alphabet() const;
Node root() const;
Set<Event> initials(const Node &) const;
Set< Set<Event> > minAcceptances(const Node k) const;
Set<Node> afters(const Node &, const Event &) const;
int divergent(const Node &) const;
int markedDivergent(const Node &) const;

3 void write(ModeOut &) const;

Of the private members, p and rho store the "arguments" of the operator 3 (a -< b iff
rho. apply(a) .member (b) is non-zero); read and fob are the required I/O ancillaries. The
constructor is currently made available only through the read method. The other private3 methods assist the definition of the simulation interface methods.

2.1 Auxiliary functions

5 The first, restrict.by-set, subtracts from its second argument any visible events which
are rho-dominated by any element of its first:

Set<Event> OpPrioISM::restrict-by-set (const Set<Event> &inhibit,I const Set<Event> &query) const

j if (query.empty) inhibit.empty M))
return query;

Set (Event> result;
for(Iter< Event > i=query; i.goingo; i.nextC))
{

Event e = i.here 0;
if (is-tau (e))

result.add-singleton (e);
else

if (setinter(inhibit, rho.apply(e)) .empty()
result.add-singleton (e);

return result;

3Mapping<S,T> is a simple templated class representing finite functions, with methods for functional
override (add), domain membership (inDom) and extent (dom), and application (apply).

3 30
I "

I

5 D1.2 Release 1.0

The events which are necessary for a node are the interior (intersection) of its minimal
acceptances:

3 Set<Event> OpPrioISM: :necessary (const Node &n) const

Set< Set<Event> > mas-minAcceptances (n);
Set<Event> result;
if (mas.empty M)

return result;
Iter < Set<Event> > i--mas;I for (result-i.here 0, i.next(;

(!result.empty 0) && i.going 0;
i.next 0)

result = setinter (result, i.here ());
return result;

and these are precisely those which can prevent transitions from contributing to the initials
of a node:

Set<Event> OpPrioISM: :restrict.by.node (const Node &n,
const Set<Event> &query) const

if (query.empty M)
return query;

else return restrict.by.set (necessary (n), query);

1 2.2 Simulation interface

Adding priority does not change the universe of events under consideration or the distin-
guished starting point of the transition graph, so these are passed on from the argument
process:

Set<Event> OpPrioISM::alphabet (void) const

return (p->alphabet 0);

Node OpPrioISM: :root (void) const

return (p->root 0);

I.
5 3

I
3 D1.2 Release 1.0

The possible initials of a node are precisely those which are not inhibited by the events
m which are impossible to refuse:

Set<Event> OpPrioISM::initials (const Node 8n) const

Set<Event> inits = p->initials(n);
return restrict.by.node (n, inits);

whereas each minimal acceptance inhibits itself (for if a low-priority and a high-priority
event are both "irrefusible" in the unprioritized world, then the low-priority one will never
occur, let alone be irrefusible, in the prioritized case):

Set< Set<Event> > OpPrioISM::minAcceptances (const Node &n) const

Set< Set<Event> > result, mas=p->minAcceptances (n);

if (mas.empty 0)I return mas;
Set<Event> ma;
int count=O;
for (Iter< Set<Event> > masi=mas; masi.going); masi.next()I{

ma = masi.here 0;

if (ma.empty 0)
return mas;

++count;

result.add.singleton (restrict.by.set (ma, ma));
}
return count > I ? upward-open (result) : result;

The final conditional here takes account of the fact that (incomparable) minimal acceptances
of the argument may be mapped to comparable sets; upward-open removes any elements

of its argument which are proper supersets of another element.
The final interesting case is calculating the alters of a node. This simply follows the

intuition that we are removing transitions which are inhibited; that is, those whose labels
are no longer in the initials:

Set<Node> OpPrioISM::afters (const Node &n, const Event &e) const

Set<Event> inits=initials(n);
if (inits.member (e))

return p->afters (n, e);
else

return empty.node.set;

132

I

3 D1.2 Release 1.0

* 3 Conclusions

The denotational model appears quite complex, but this captures what is in fact a very
simple intuitive concept over the operational semantics of CSP. Since the basic modeling
of processes within FDR 2 is at the operational level, this means that the definition of the
prioritization operator is reasonably straightforward.

There are some caveats which apply, however, due to the fact that the operator definition
essentially gives a modified operational description to an operationally presented process:

"" The operator is therefore sensitive to transformations of its argument which are con-
gruences with respect to the standard denotational semantics. In particular, normal-
ization will close up under uncertainty; and many compression techniques will also do
so in whole or in part. (Simply rendering the transition graph as an explicit tabulationI of the states in order to optimize access to the semantics is safe, of course.)

"* The same considerations apply after the operator has been applied. Any further3processing may increase or decrease the uncertainty, but this is unproblematic because
of the nature of that processing.

"" Any refinement check is (necessarily, in the current and any conceived future frame-
work) against a normalized specification. Normalization closes under uncertainty, and
yields a transition graph which can sensibly only be identified with the minimal pro-
cess under 1HT sharing the same event-traces and (final) refusals. The degree of1. uncertainty of the implementation side cannot affect the result of the check. We have
not therefore attempted to implement the closure under uncertainty operationally5 (which would be possible, if unproductive).

Specifications which do not exploit any relative prioritization of the events they may en-
gage in clearly still make sense here: among these are commonly useful properties such as
deadlock freedom. Trace specifications also correspond to using the most nondeterministic
process with the desired trace set, and so may be used freely in this context. Specification

* idioms which do attempt to exploit priority are a topic which requires further investigation.

References

i [1] P.H.B. Gardiner and M.H. Goldsmith. Inside FDR 2. Technical report, Formal Systems
Design & Development, Inc., 1994. Adjunct to D1.2 of SBIR N00014-93-C-0213, in [4].

1 [2] M.H. Goldsmith et al. N00014-93-C-0213: Second Quarterly Report. Technical report,
Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn, AL 36831-3004,

1 1994.

[3] M.H. Goldsmith et al. N00014-93-C-0213: Third Quarterly Report. Technical report,
Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn, AL 36831-3004,

1 1994.

1 33

i

I
5D1.2 Release 1.0

[4] M.H. Goldsmith et al. N00014-93-C-0213: Fourth Quarterly Report. Technical report,
Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn, AL 36831-3004,
1994.

1 [5] David M. Jackson and Richard 0. Chapman. Models of the Fault-Tolerant Processor;
Architecture and Verification. Technical report, Formal Systems Design & Development,3n Inc., 1994. Deliverable to SBIR N00014-93-C-0213, in [4].

[6] D.M. Jackson and M.H. Goldsmith. Scheduler Specification in CSP: Fixed Priority Pre-
emptive Example. Working Paper W.2.2.1, Formal Systems Design & Development,
Inc., April 1994. Included in Report of SBIR N00014-93-C-0213, in [2].

[7] G. Jones. A Timed Model of Communicating Processes. D. Phil. thesis, Oxford Univer-3 sity, 1982.

I
I
I
I
i
i
i
I

This is Release 1.0 of this document, last modified by Michael Goldsmith at 17:49:26 GMT on December 16,
1994.

134

I

I Models of the Fault-Tolerant Processor
Architecture and Verification

David Jackson
3 Richard Chapman

December 16, 1994

Summary

This document describes our work to date on formalizing the design and
analysis of the Transputer Fault-Tolerant Processor system. The early sections
summarize the fault-tolerance properties which we intend to verify, our model
and a simple demonstration that the architecture does meet our requirement
for Byzantine fault-tolerance. We then describe how such verification can be
simplified if we exploit the symmetry both the overall design, and of the be-
havior of its components. The next section describes how we can relate these
models of network behavior to the application level scheduling problem, and
in particular how we can exploit temporal redundancy to tolerate transient
faults. It includes discussions on voting, permuted schedules and on transient
recovery techniques. Abstract models of task execution and voting are given3 which, despite their simplicity, provide a framework for future models of spe-
cific scheduling policies. We include two more detailed models of the system
which analyse a distributed model of the system using synchronous and partly3 asynchronous models.

i
I

I

I
I

I
I
5 Contents

1 Fault-Tolerant Behavior 365 1.1 Classes of Fault-Tolerance 36
1.2 Fault models .. 371 2 High-level Architecture 38

2.1 Implementing the Oral Messages algorithm 39

53 Tolerance of Byzantine Faults 40

4 Refining the Architecture 48
4.1 Exploiting Symmetry 48

5 Fault-management & Application Programs 51
5.1 Permuted scheduling 51

5.1.1 Validity of Permutation 51
5.1.2 Permitted Permutations 55

5.2 Voting in permuted schedules 56

6 Distributed Models of a Voter 58

7 Recovery from transient errors 71
7.0.1 A fully-voted reversionary schedule 72
7.0.2 A single reversionary schedule 73
7.0.3 Partial reversionary schedules 73

38 Conclusions 74

A Vector-based Model for Permuted Scheduling 76

1 Fault-Tolerant Behavior

We begin by summarizing the types of behavior which we ultimately intend to analyse
in order to show how they can be expressed in terms of the models we will describe

I below.

3 1.1 Classes of Fault-Tolerance

The first class of faults we will consider, and the errors they may cause are, those
outlined in a previous project document, [2]. These are the Byzantine failures of
a system element, after which no assumptions can be made about the behavior of

136

I
I

the component. In particular, such faults may not be manifest - failure may not be
obvious to those parts of the system with which the failed element interacts. It is
well-established that a suitably redundant system can tolerate Byzantine failures, but
that the cost of such a system is higher (i.e. it requires greater redundancy) than a
system designed to tolerate manifest faults (see, for example, [8]).

We can exploit this redundancy, however, to improve tolerance to other types of
fault. Of particular importance are "common-mode" errors which arise in a number
of replicated elements simultaneously, perhaps as the result of some environmental
factor. Where these errors arise from transient faults (such as corruption of semi-
conductor memory) we can use temporal redundancy to allow correct operation to be
resumed even if the number of elements affected is much greater than the number
of Byzantine failures that a system might tolerate. This strategy has again been
outlined in a previous project report [1].

Obviously these two situations are far from being an exhaustive catalogue of fault
situations which we might design a system to tolerate but they do represent a pos-
sible extremes: in the Byzantine case we suffer complete non-manifest failure of few
components, in the transient case we tolerate identifiable temporary faults in many.
Other combinations, such as manifest permanent faults, may be included in later
analysis.

1 1.2 Fault models

Modeling a component capable of Byzantine failure is relatively straight-forward,
because we need to satisfy very few constraints on behavior after an error, but we
must nevertheless take into account the features that our model represents if we are

* to provide a satisfactory model.

High level abstractions In models at the highest level of abstraction (the repli-
cated synchronous view of [2]), a failed component can be represented as ignoring
all inputs. We choose to ignore, rather than to refuse, inputs in order to remove the
need to model details of the error detection and buffering which is used in practice
to implement communication between distributed components. These communica-
tion elements are, of course, modeled in the lower level abstractions (Section 6 of
this report). Abstracting from the implementation of the communication and error
detection mechanism also influences the way we should model outputs from a faulty
system element. The most obvious approach is to allow arbitrary generation or refusal
of output events. This correctly captures the idea that a failed component exhibitsI the most general possible behavior but does not reflect the ability of a receiver to
detect when outputs are being refused (typically by means of a time-out). We there-
fore model a faulty output as a combination of arbitrary valid outputs together with
a distinguished error value which is always potentially available. While placing con-

1I 37

£

I

straints on faulty behavior may appear unrealistic, it should be remembered that our
fault model is actually also incorporating a significant amount of information about
the ability of connected components to detect faults. We will make this information
more explicit in later sections, but this abstract model will remain useful because it
does not make assumptions about how communication errors are detected, and thus
applies to a wide range of possible error detection techniques, including time-outs,I parity or check-sum errors or more complex protocols.

Lower level abstractions In more detailed models the models of faulty compo-
nents actually become simpler, because we are able to model more faithfully the way
in which errors are detected by the remainder of the system. Both input and output
behavior of a process after the occurrence of a Byzantine fault can be assumed to be
entirely arbitrary: both inputs and outputs can be performed in any order, or refused
at any stage. This is exactly the behavior of the CHAOS process of CSP, as we
might expect of a completely undetermined behavior.

By their very nature, transient faults require a more detailed model of the internal
state of a system than Byzantine failure. The essence of our approach will be to
decompose the application calculations into a series of tasks each of which calculates
new values for part of the system state (and may produce outputs) from the previous
system state and any inputs present. A transient fault is modeled by assuming that
the fault corrupts some part of the processor's state arbitrarily, and that all tasks
depending on that part of the state may in turn corrupt their outputs and final
states. The task of the fault management system is to identify the corrupted parts
of the system state and re-generate it where possible. Adding sufficient information
to our high-level model to support this reasoning is discussed in Section 4 and later3 sections.

3 2 High-level Architecture

For practical applications, we will assume that tolerance of a single Byzantine fault
is sufficient, and thus we will concentrate on quad-redundant systems. Each of the
four redundant fault-containment regions (FCRs) which make up such a system must
execute both the application tasks and the functions related to fault management:
in our demonstrator application each FCR will typically contain two processors, one
executing the application and another managing communication and input-output.
This bipartite view is also applicable to single processor systems built using Trans-3 puter hardware, as separation between processing and communication is present even
if the components are actually a CPU and a link engine on a single IC.

I
3 38

I

I
I

3 Application Comms Unit

I _:

- Aplcto -o m Unit ------ ------

i I, 1
Application Comms Unit

I

Application Comms Unit

1 Figure 1: Communication between peers

3, 2.1 Implementing the Oral Messages algorithm

As discussed in [2], we will use the Oral Message (OM) algorithm to establish con-3 sensus values for data in the presence of faults. Each FCR will communicate its local

values for state and output data to its peers, and vote upon a derived value using
its local data and the values it receives in return. The communication will have theI pattern shown in Figure 1. Each node in Figure 1 represents the communications

processing element of an FCR. Data is received from the application along the in
I channel and passed out along the cross channels (the vertical links in the diagram).I Values received, along with the original value received, are combined by a majority

voting process and the result is passed to the application or the environment.

I

I

I
I

ino Lae0 outo

I ot
in, Lane 1 ou,Ii

in2 Lane 2 out2

in3 Lane 3

I

I

Figure 2: High-level Model Architecture

3 Tolerance of Byzantine Faults

I We start our analysis with a high-level abstraction which serves to justify our primary
claim of tolerance to Byzantine faults. The following model has the same structure
as that outlined in Section 2.1. We concentrate on modeling the communicationI behavior of the system, and thus model the behavior of the input-output subsystem
alone, representing data flowing to or from the application or 10 devices by sets of
channels in and out. The pattern of communication is then as shown in Figure 2. The
channels in and out may not, of course, exist as explicit data paths in the case that
application processing and communications are combined on a single processor, but
there will always be some identifiable transfer of data corresponding to them. Each
FCR (i.e. each node in Figure 2) is represented by two processes, one representing
the outward transfer of local data to peer FCRs, the other representing voting using3 data received.

The desired behavior of our system is described in [2] in terms of two properties
of a system distributing data from a single source by means of a two-stage algorithm.
The properties are:

40

I
I
3 Agreement If two processors are non-faulty, they agree on the data values which

they believe are being communicated.

Validity If the originator of a data item is non-faulty, all non-faulty processors derive
the correct value.

To model the two stage transmission we will consider a network consisting of the
four communication elements of our system together with an addition process which
performs the initial data distribution. In a physical system we would expect this
additional task to be implemented within one particular FCR, the transmitter of the
data flow being considered, while the other FCRs would be receivers of the flow.

In order to capture the validity property described above, we add a further compo-3 nent to our network which does not correspond to any actual implementation process,
but rather captures our ability to observe the system: if each FCR delivers the value
it computes to a final overall majority vote, then if the validity property holds of
outputs of the FCRs, the output of the voter must always match the value provided
by the data source. The overall data-flow through the network is shown in Figure 3.
We require that this complete system, when viewed as a data transmission medium
between its source and the final output, is a perfect buffer, provided that the first-
round data distribution is non-faulty. This must hold even if one of the receiver
FCRs is Byzantine faulty. A CSP model of this system (suitable for analysis with the
FDR [3] tool) is given below.

tftp.csp: Model demonstrating tolerance of 4-FCR Oral-Messages algorithm to
a single Byzantine fault.

3 (c) Formal Systems Design & Development, Inc, 1994

Originated by: Dave Jackson.3 -- This version: $Id: tftp.csp,v 2.0 1994/12/16 17:44:03 dave Del $

In the current model we are principally interested in the distinction between a real
data value and a potentially erroneous one. It will suffice, for the present, to consider
a single "good" data value, and an error token, Err:

3 RAWDATA = {0}

Err = 99 Any value not in RAWDATA

U DATA = union({Err},RAWDATA)

341

I
!
I
I
I

I
,
I

I

Figure :3: Detail of Data-flow Through FTP ModelI
I
U

3 4

I
U

N Specification of data exchange mechanism

We require that data is transmitted from the data source to the outputs of each commu-
nications element in such a way that a majority vote over all those outputs correctly
reflects the input. Our high level specification is thus that the system is a buffer. We
can in fact show that the system represents a deterministic buffer, as follows:

The initial state of an n place buffer is empty:

BUFFER(n) = BUFF(<>,n)

I For any state of the buffer, if it is empty it must accept an input.

BUFF(t,n) =
if (null(t)) then source?x:RAWDATA -> BUFF(<x>, n)
else

Otherwise, if the buffer is full it offers only an output.
if ((#(t))==n) then sink!(head(t)) -> BUFF(tail(t), n)
The final case, where the buffer is neither full nor empty allows both input and output.
else (source?x:RAWDATA -> BUFF(t-<x>, n))

[]
(sink!head(t) -> BUFF(tail(t), n))

At the time of writing, the FDR tool requires that we specify a fixed maximum size
for our specification:
BUFF4 = BUFFER(4)
(This restriction is not theoretically necessary and we expect to be able to relax thisI constraint in future versions of FDR2.)

3 Model of OM Algorithm for Four FCRs

The most complex basic component in the algorithm is the voting module: the following
process takes inputs from the channels specified in the set sources and passes majority
voted values to the channel sink

I Voting is encoded by maintaining sets of those channels which have supplied values
for each data type, including error returns. Initially these sets are empty:

I MAJ(sources, sink) = MAJORITY(sources, {}, {}, {}, sink)

143

U
I

U While it is accepting input, the voter offers a choice over the inputs which it is still

expecting to receive. When input is received, the channel is added to the appropriate3 set, and removed from the set of exepected inputs.

MAJORITY~expected, zeroes, ones, errs, sink)
if (card(expected) == 0) then OUTPUT(zeroes, ones, errs, sink)

else (0 x : expected D (x?y->
i (if (y==O)

then MAJORITY(diff(expected,{x}),
union(zeroes,{x}), ones, errs, sink)

else if (y==l) then
MAJORITY (diff (expected, {x}),

zeroes, union(ones,{x}),errs,sink)
I else

MAJORITY(diff (expected, {x}),
zeroes, onesx,union(errs,{x}),sink))))

When all expected inputs have been received, the voter supplies an output according to
the size of the sets of inputs received. (For a single element data domain, we output
the same (valid) value for any combination of valid inputs.)
OUTPUT(zeroes, ones, errs, sink) =

if ((card(zeroes)==4) or (card(zeroes)==3))I then sink!O-> MAJ(Union({zeroes, ones, errs}), sink)
else sink!O-> MAJ(Union({zeroes, ones, errs}), sink)

I The other required component is a data distribution process. While we could write
this in a sequential form similar to the voter, we feel the symmetry of the action is
made clearer if we express this process as a parallel composition of simple buffers.
These buffers synchronize on their input but not on their output, yielding the required
interleaving behaviour.

COPY = inp ? x:RAWDATA -> oO ! x -> COPY

5 The following channel definitions specify the input to, and outputs from the first-stage

data distribution. Later instances of the data distribution process will be derived by
* renaming this first one:

pragma channel inp : DATA3 pragma channel oO, ol, o2, o3 : DATA

344

U
m
3 INSERT = COPY [P {inp } if

((COPY[[oO <- ol 1]) [I { inp } I]
((COPY[[oO <- o2] f) [I { inp } if3 (COPY[[oO <- o3]])))

m The following channels define the external interfaces to our model:

i pragma channel source, sink : DATA

and these implement the connections between peers:

I pragma channel xcmid : DATA
pragma channel xcOl, xc02, xc03 DATA
pragma channel xclO, xc12, xc13 DATA
pragma channel xc20, xc2I, xc23 DATA
pragma channel xc30, xc3l, xc32 DATA

and finally, the channels which represent the input and output from each of the FCRs:

3pragma channel ain, bin, cin, din : DATA
pragma channel aout, bout, cout, dout : DATA

3 For brevity in later descriptions, we define sets of channels representing the inputs:

XCIO = {xclO, xc20, xc30}
XCI1 = {xcOl, xc2l, xc3l}
XCI2 = {xc02, xcl2, xc32}3 XCI3 = {xc03, xcl3, xc23}

and outputs

m XCOO = {xcOl, xc02, xc03}
XCO1 = {xclO, xcl2, xcl3}
XC02 = {xc20, xc2l, xc23}
XC03 = {xc30, xc3l, xc32}

I connecting each FCR to its peers. The total interface sets of each FCR are as follows:

ALPHAA = (Union({{ain, aout}, XCIO, XCO0}))
ALPHAB = (Union({{bin, bout}, XCII, XCOI))

145

ALPHAC = (Union({{cin, cout}, XC12, XCO21))I ALPHAD = (Union({{din, doutl, XC13, XCO31))

3 We may now define processes representing each FCR. Each consists of a data dis-
tributor communicating with a voter by a channel xcmid. The data distributor also3 provides outputs XCOn and the voter accepts inputs from set XCIn.

FTLANEAI ((INSERT [[inp<-ain, oO<-xcmid, oi<-xcOl, o2<-xcO2, o3<-xcO3]])
[(union({ain, xcmid}, XCOO)) II(union({aout, xcmid}, XCIO))J
(MAJ(u~nion(XCIO,{xcmid}), aout)))

\ {xcmid}

FTLANEB =

((INSERT [[inp<-bin, oO<-xcmid, oi<-xclO, o2<-xcl2, o3<-xcl3]))
[(umion({bin, xcmid}, XCOI)) W(union({bout, xcmid}, XCII))]
(MAJ(union(XCI1,{xcmid}), bout)))

\ xcmid}

3 ~FTLANEC
((NSERT [[inp<-cin, oO<-xcmid, ol<-xc2O, o2<-xc2i, o3<-xc23]])
[(union({cin, xcmid}, XCO2)) II(union({cout, xcmid}, XC12))]3 ~(MAJ(union(XC12j{xcmidj), cout)))
\ xcmid}

I FTLANED=
((INSERT EHinp<-din, oO<-xcmid, oi<-xc3O, o2<-xc3i, o3<-xc32EI)
[(union({din, xcmid}, XCO3)) II(union({dout, xcmid}, XC13))]I (MAJ(union(XC13,fxcmid)), dout)))
\ {xcmidl

I The fault-tolerant communication system as a whole is a parallel combination of these:

3 FTBUFF =
(((FTL.ANEA [ALPHAAI IALPHAB] FTLANEB)
[union(ALPHAA, ALPHAB) I Iunion(ALPHAC,ALPHAD)]3 ~(FTLANEC EALPHAC I IALPHAD] FTLANED)) \

Union({XCIO, XCII, XC12, XC131))

U The following sets define the interfaces of the first-level data distribution, the voting

* 46

network Just defined, and the majority voter used to complete the model.

ALPHAIN = {source, ain, bin, cmn, din}3 ALPHAFT = fain, bin, cin, din, aout, bout, cout, dout}
ALPHAMJ = {sink, aout, bout, cout, dout}

These components are combined as follows:

SYSTEM =

((INSERT EHinp<-source, oO<-ain, ol<-bin, o2<-cin, o3<-din]])
EALPHAIN II ALPHAFT)
FTBUFF)
[(Union({ALPHAIN, ALPHAFT})) IIALPHAMJ]
MAJ({aout, bout, cout, dout}, sink)) \ ALPHAFT

We hope, and indeed find, that BUFF4 E: SYSTEM

Now consider a failed processor, assumed not to be the source of single source data:

RUNCA) = 0 a:A 0 a -> RUNCA)

FTLANED' = RUN(Union({events(i) I i<- union(fdinJ,XC13)D))
III CHAOS(Union({events(i) I i <- union({idoutlXCO3M)}

III RUN({c.Err I c <- union({dout},XCO3)})3 NB broken channel always allows error outputs.

FTBUFF' =
(((FTLANEA [ALPHAAI IALPHAB] FTLANEB)

[unuion(ALPHAA, ALPHAB) I Iunion(ALPHAC ,ALPHAD)]
(FTLANEC [ALPHAC I IALPHAD] FTLANED')) \3 Union({XCIO, XCIi, XC12, XC131))

SYSTEM' =3 (((INSERT [[inp<-source, oO<-ain, ol<-bin, o2<-cin, o3<-dinl))
[ALPHAIN I IALPHAFT]
FTBUFF')U E[(Union({ALPHAIN, ALPHAFT})) IIALPHAMJ]
MAJ({a~out, bout, cout, dout}, sink)) \ ALPHAFT

I We observe (for a single element data set + error value) that BUFF4 E: SYSTEM'

* 47

I
I

(approx 2.4M state pairs).

* 4 Refining the Architecture

4.1 Exploiting Symmetry

I Whether verification is carried out by hand or mechanically, analysis of detailed mod-
els of the fault-tolerant processor will involve significant effort. From the structure of
the model, however, we can see a very clear symmetry between the four components
of the network.

We can exploit this symmetry in a number of ways, the most obvious being a
reduction in the number of possible failures to be considered. If the network is
operating in a fully symmetric manner, it obviously does not matter which of the
processors is considered to fail, and we may thus isolate failures to an arbitrary fixed
FCR. If the operation is asymmetric, as in the distribution of single-source data, we
way still exploit the three-fold symmetry of the receiver processes and model single
faults by only two cases: either the transmitter fails, or one of the receivers does. In
the latter case the identity of the failed lane can again be arbitrary.

A more powerful technique exploits not only the large-scale symmetry of the
network, but also takes advantage of the symmetric behavior of the components.
Suppose, for example, that the data distribution process is entirely symmetric as
regards the order and manner in which it makes its output available, as is the case
for the process INSERT in the model of Section 3. Recall the data-flow shown in
Figure 3; if we concentrate on the values produced by any one of the local voters, we
see that it depends on only four of the data interchanges (i.e. the value from its local
input and values received from its three peers. The relevant paths are highlighted
in Figure 4. The behavior of each data distribution phase when we consider only
one of its outputs will be significantly simplified, and indeed in many cases' it will3 degenerate to a simple form of buffer. The overall system which we must analyse to
predict the output of a given voter reduces to that shown in Figure 5. We can use this
simplification to allow us to prove properties of the whole system by considering only
a single voter. Suppose we show that the output of the voter in the figure agrees with
its input provided that no more than one of the preceding buffers (representing the
data distribution operation of each FCR) is faulty. Unless we use explicit assumptions
about which voter we consider and which buffer is faulty, our reasoning must then
be valid for any functioning voter, and any single failure: we have established that
all functioning voters agree with the input. In practice, of course, not all the data
distributors will be identical in their relationship to the voter, because one of them

'Typically those where blocking one output does not prevent further inputs and outputs on otherU channels.

348

I
I
I
I
I

..... .. •....

.... :

I ~ ~............................ =. o oo.

Figure 4: Data-flow to a Single Voteri

I
I

I

I
i
I
I
i,
!
I
I

I
i ,
!
I

Figure 5: Analysing the Output of a Single Voter!
!
I
| 50

!

U
U

will be contained in the same FCR, and may be implemented by the same processor.
However, presence of a Byzantine fault in this distributor will then imply a potential
fault in the voter, and we do not need to (and cannot expect to) establish that FCRs

3 behavior.
This approach allows our models to concentrate on the behavior of a single com-

ponent in our system, rather than having to model and analyse four identical replicas.
I We shall use this technique extensively in the following sections.

* 5 Fault-management& Application Programs

We have demonstrated in the preceding sections that tolerance to Byzantine faults
can be achieved by designing our network of replicated processors to implement the
Oral Messages algorithm. This tolerance is a property of the network and its commu-
nication pattern, and is thus independent of the actual application program, provided
that sufficient data is exchanged and voted upon to keep the replicated copies of the
program in agreement.

The second goal of our approach is to tolerate transient faults, including (but not
limited to) those which affect a large proportion of our network for a brief interval.
Designing and verifying strategies to achieve this aim will necessarily involve a more
detailed knowledge of the operation of the application program than we have used in
the earlier parts of this document. In particular, we will need knowledge of the tasks
executed by the application program and their data dependency and scheduling con-3 straints. We will adopt the view that real-time applications are typically constructed
as a set of atomic tasks, exchanging data by means of shared variables, and subject
to data-dependency and timing constraints as discussed in [7].

5.1 Permuted scheduling

One method identified in [1] to reduce the impact of multi-processor transient faults
is to ensure that our replicated processors execute different tasks at each instant:
rather than fix a schedule for executing application code, we define a set of permuted
schedules. We intend that if a transient fault disrupts the tasks executing at a given
time on a number of processors, then there should still be enough redundant execu-
tions of those tasks completed at other points in the same scheduler cycle for valid
results to be obtained by voting.

3 5.1.1 Validity of Permutation

The potential benefits of permuted schedules can be verified using a relatively straight-3 forward, if potentially unwieldy CSP model. The model given below characterize the

I51

I
I

communications element of a system by a series of VOTER processes, each con-
cerned with validating the output of some task. They repeatedly obtain information
(on a channel task) from the execution of a task; for simplicity we assume that it3 is clear from a boolean flag passed along this channel whether or not the execution
succeeded 2 . Provided that at least two successful executions occur in each cycle, the
voter will successfully agree on the output values of that task (signalled by the pass
event) and wait for the end of a frame (indicated by the sync event).

The actual permuted schedules can be modeled in an abstract way by providing
each task with a "source" of executions - we do not need to model the actual schedules
explicitly, but only to capture the condition which a reasonable set of permutations
will satisfy in the presence of transients: each task will be executed four times in
each cycle, of which no more than one will be corrupted. This importance of this
model is that in later documents we will be able to constrain these sources by placing
them in parallel with particular schedulers, and verify that those schedulers do meet
the following correctness condition: We can combine source processes for each of the
tasks under consideration with the voters, and demonstrate that the voters are always
satisfied that sufficient executions have succeeded. In terms of the model below we
must show that each frame contains a pass event for all tasks.

timing. csp: A model supporting verification of permuted schedules and3 associated voting.

(c) Formal Systems Design &d Development, Inc, 1994

Originated by: Richard Chapman / Michael Goldsmith This version:3 -- $Id: timing.csp,v 2.0 1994/12/16 17:44:03 dave Del $

Basic type definitions:

I TASK = { 0, 1, 2, 3, 4 } The set of task names
BOOL = { true, false } and validity values

I Channel declarations:

3 The following channels indicate completion of a task instance, and pass a flag indi-
cating its success or failure:
pragma channel task : TASK . BOOL

pass is used to indicate successful acquisition of sufficient correct copies of the output
of a task by a voter

2This is simply an abstraction of the actual voting and comparison of data.

352

I
I

pragma channel pass : TASK

pragma channel sync
indicates the end of a frame, and

pragma channel work
is an interleaved event simply representing the occurence of some internal computation
(typically related to comparing the results of different instances of a task).I
The communication part of the system defines a voting process for each task in the

* system:

COMMS = ((((VOTER(O, 2)
[I {I sync I} I] VOTER(i, 2))

fl {I sync I} I] VOTER(2, 2))
fl {l sync I} I] VOTER(3, 2))

[I {I sync 1} 1] VOTER(4, 2))
The voters synchronize on the sync signal, ensuring that all tasks are validated with

i respect to the same cycle boundaries.

The voter process itself accepts inputs on task, and when sufficient valid instances

have been counted, it outputs a pass signal recording the task number.

VOTER (i, n) =
task.i ? ok->

if ok
then if n == 2

then VOTER (i, 1)
else if n == 1
then work-> pass! i -> FRAME Ci)
else work -> VOTERUi, n) never happens

else work -> VOTER Ci, n)

After successful output, the voter waits for completion of the cycle. It is still prepared
to accept (and discard) further completion signals.I FRAME Ci) =

(sync -> VOTER Ui, 2)) D task.i ? any -> work -> FRAME Wi)

I

i
I

The tasks are represented by a combination of source processes, each enforcing the
condition that sufficient correct instances of the appropraite task occur in each cycle.
Their only interaction at present to to synchronize on the end-of-cycle signal.

Future models will exploit this framework by combining particular scheduler patterns
in parallel with these processes.

SOURCES = ((((SOURCE(O)
[I {I sync I} i1 SOURCE(1))
[I {I sync I} I] SOURCE(2))
Pl {l sync I} I SOURCE(3))
[I {l sync I} I] SOURCE(4))

At the start of each cycle, four instances of the task are required, and no incorrect
instances have been observed.

SOURCE (i) = NOTYETBROKEN (i, 4)

U This process represents a source which has yet to observe an unsuccessful execution.
It permits a synchronization signal and a return to its initial state if all four instances
of the task have been observed. (n holds the number yet to be seen). If only one task
remains to complete, it will allow the end-of-frame signal, assuming the last instance of
the task to have failed. In other cases, it waits for a completion signal and decerments
the counter if the execution succeed, or moves to the ALREADYBROKEN state if
it failed.

i NOTYETBROKEN (i, n) =

if n == 0
then sync -> SOURCE Wi)
else if n == 1
then sync -> SOURCE (i) [task.i ? ok -> sync -> SOURCE Wi)
else task.i ? ok ->

if ok
then NOTYETBROKEN (i, n-1)
else ALREADYBROKEN (i, n-1)

In each cycle, once a single erroneous execution has been observed, the remaining n
must complete successfully.

ALREADYBROKEN (i, n) =

if n == 0

I 54

I

I
I

then sync -> SOURCE (i)
else task.i ! true -> ALREADYBROKEN Ui, n-1)

In the current version, our system model is simply the combination of the task execu-
tion part and the communication part.

5 SYSTEM = SOURCES [l {l sync, task l} I] COMMS

The model show above does have some practical disadvantages, however. The
computation (represented by work), and the task completion (task) signals are ar-
bitrarily interleaved, and the number of possible states whose behavior must be con-
sidered (either by automatic or manual analysis) grows very rapidly as the number
of tasks considered increases. We can reduce this growth by noting that the voters
would in practice differentiate between processing and communication, possibly re-
fusing to exchange more data until the work associated with previous communication
was complete. In the CSP model, we wish to distinguish the work events from the
task communications by a difference in priority.

Encoding this distinction in a form suitable for use with the current FDR tool
is quite difficult. We must consider the voters as constituting a single process which
maintains a vector of information, holding a count of executions of each task in each
element of the vector. This allows us to replace the interleaving of communications in
the previous model with a sequential form which maintains the desired relationship
between task, work and pass events. A model which uses the SML embedding3 techniques supported by FDR to implement this scheme is given in Appendix A.

A much more satisfactory model incorporating priorities to distinguish internal
and external activity in a system or sub-system can be built on the basis of Dr Gold-
smith's work described in another part of this report [5]. The FDR tool currently
under development ([4]) will, when extended by the prioritization operator developed
by this project and discussed in [5], allow such models to be written in the simpler
style of the model given above, while maintaining the semantic distinctions and prac-
tical efficiency of that given in Appendix A. Such a framework will be essential for
the extension of this framework into a tool for checking the transient-tolerance of a
specified set of permutations of a schedule.

5.1.2 Permitted Permutations

For the use of permuted schedules to be valid, we must be able to find an appropriate
number of viable schedules for the task set which makes up the application program.
This potentially difficult task is subject to some non-obvious constraints, as we will
show here. Consider the data dependence relation and four schedules in Figure 6.
Assume all tasks take equal time to execute. The instance of task one in any given
frame for processor four computes a value that will not be computed by the other

I 55

I

I
!

three processors until the beginning of the next frame. Suppose that we are voting on
task seven only, and that processor four's value for task seven in some frame turns out
to be in error. That means that the value already computed for task one for the next
cycle must also be invalidated. Somehow, processor four must at some future point
"catch up" - compute values for tasks one through six, since they are not voted, and
be able to compute a valid value for task one in advance of the other three processors
if it is to resume executing its schedule. Processor four will never be able to do it,
since to do so it must after some number of frames k have computed 7k + 1 values in

* 7k time slots.

1 1234567112345671...

Processor 2:

4 5 6 ...P1236514712365147'1...
Processor 3:13126457131264571...

Processor 4:
7 ... 12536471125364711 ...

I Figure 6: Disallowed set of permutations

Consequently we require permissible permuted schedules to obey the property that3• within a single frame the instances of a task on all replicated processors correspond
to the same iteration. That is, if we let OP(ti) represent the output from task ti on
processor p in frame k, then in the absence of failures,

Vk.Vp' E Processors.OP'(t,) = O-(ti)

1 5.2 Voting in permuted schedules

The standard method of implementing systems whose state information is maintained
by an interactive consistency algorithm such as Oral Messages is to arrange that
applications use the agreed value of a state variable in place of the locally calculated
one when a task requires that variable as input. In effect, we must arrange our voting
and computation in such a way that a sufficient set of state values are always agreed
by voting before they are used by tasks which depend on them.

These constraints further complicate the process of finding suitable schedules for
a set of redundant processors which, as the previous section and reference [7] show,
is already subject to significant constraints.

We therefore seek to relax this "vote before use" condition, in order to introduce
sufficient flexibility to support permuted schedules and to gain other benefits:

156

I
I

. Relaxing the restriction places fewer constraints on the sequence in which tasksI can be executed, potentially reducing any need for one processor to be idle while
others compute values which need agreement.

e In systems where computation (by the application) and communication (which
constitutes much of the voting process) use different resources, they can be over-

I lapped to a greater extent if the strict ordering is relaxed, leading to significant
performance benefits.

Rather than requiring the replicated processors to vote on the outputs of all tasks,
we only specify voting on outputs to actuators and on a set of tasks satisfying a
minimal voting condition ([9], p. 60), which we call a basis set of tasks. If permuted
schedules were not permitted, voting could occur immediately upon completion of the
task to be voted (by all the processors) which should happen simultaneously, given
the requirement that we know absolute execution times for all tasks ([1], p. 1).

However, if permuted schedules are permitted, voting must be delayed at least
until a plurality of processors have computed some output value for the task to be
voted. The point within a frame at which a given basis task's output can be voted
is statically determinable and thus the communication events necessary to carry out
the voting can be incorporated into the schedule.

A consequence of the necessary delay in voting is- that it becomes likely that a
processor that is the first to run some basis task will have to use its locally computed,
not yet voted, value for the output of that basis task until the voted value becomes
available. If the voted value agrees with the locally computed value, all is well, but
if the locally computed value is invalidated by the vote, the processor must begin
recovery of a number of tasks. The results of not only the voted task but also all
other comparable tasks (either as ancestors or descendants) in the transitive closure
of the data dependence relation between tasks [6]become invalid, as in the example of
Figure 7. Upon invalidation of any tasks, there must exist some sequence of actions
that the recovered processor can take to restore all invalidated tasks to having valid
input data at the appropriate times in each frame, according to its schedule.

We can shorten the waiting period required for voting by not requiring a task
to wait for results from all four replicated processors. Two values in agreement are
enough evidence for a processor to conclude that it has the voted value, so why
wait for all four? However, a processor that proceeds before receiving input from allI processors contributing to a vote must ensure that those messages it plans to ignore
are properly dealt with if they should arrive at some future point. We propose that
a processor deciding to ignore communications from some other processors should
spawn a sacrificial buffer process that will catch those messages when they do arrive,
or notify the processor if they never do (that is, if the buffer process receives another
request from its own processor to wait on a value from the peer processor before it
has received a first value from the peer). This fact is evidence of a failure either in

!57

I
I

v out ut fails vote

(Zinv iv =task output

val X , viinvalidated3 valval =task output

val remains valid

-data dependence

I

between tasks

Ir Figure 7: Tasks that must be invalidated

the peer processor or the link. We outline a specification for such a buffer and the
code that the processor spawning the buffer must run in the next section of this note.

There are obviously a number of potential difficulties which relaxing the voting
pattern in this way may introduce. It is obviously vital that the tolerance of Byzantine
faults should not be reduced, and indeed this fact does follow from the properties of
the network shown in Section 3. Because we do eventually obtain as much information
on the correctness of a value as is available in the straight-forward implementation
of the OM algorithm our ability to detect and correct errors is unaltered, although
detection of an error may be slightly delayed when compared with a fully sequentialI• voting arrangement.

The most significant penalty incurred by the change is that transient errors in
the data held by a processor are no longer corrected "automatically": if state data is
always agreed with a processor's peers before being used then a single corrupt value
will not be passed to any instance of the tasks which use it, and if the fault causing
corruption is transient it will be corrected when the value is next modified. This
is obviously not the case if a processor continues using the corrupt value without
checking it. The process of recovery from transient errors will be considered further3 in a later section.

6 Distributed Models of a Voter

Below we develop a model of a voting mechanism that can be used when processors
are running permuted schedules. Rather than requiring the communications processor
to spawn a process to catch "late" data values transmitted by peer processors, we

1 58

I

I
I

add four local processes, running concurrently with the voting mechanism, which weI call smart buffers. Each smart buffer is responsible for reception of messages from
one of the peer processors, for maintaining the local processors' decision about the
state of that peer processor (good, faulty, or dead), and for conveying information
about recent communications with the peer processor when requested.

I Buffers
(NONEorBOTH or PARENT or PEER)

I
parent.

•ast.O outside. 1

Processor
(UNDECIDED

i] outside.3

3

i Figure 8: Local processor and buffers for communication with peers

The buffer has three major states. The current state is determined by which of
i the local (or parent) processor or the remote (or peer) processor it has last com-

municated with. The communications processor has two major states. We say it is
decided if it has determined the valid value for its task for this frame as a result of

S~comparisons between values sent by the remote processors for the task's value this
frame. Otherwise it is undecided.

I ~sb. csp: Distributed model of communication and voting

(c) Formal Systems Design & Development, Inc, 1994

S~Originated by: Richard Chapman This version:

| 59

I

I

3
(3 -- $Id: sb.csp,v 2.0 1994/12/16 17:44:03 dave Del $

There are four processors, numbered 0 to 3.

FOUR = {0, 1, 2, 3}

I The value computed by a task may be one of two valid values, or a mesage from a
processor to ignore its value

3 DATAVAL = { one, zero , ignoreme }

I A processor may assign one of its peers any of the following status values

STATUSVAL = { bad, ok, dead }

I The system present at each processor consists of the process running on the processor
itself, plus four concurrent processes representing buffers to receive values from the
remote processors (we could handle the value computed locally as a special case, but
do not). The 4 buffer processes send data values to the local processor over the offer
channels

pragma channel offer : FOUR . DATAVAL

3 The local processor can communicate its voted value for the task to the buffers over
the parent channels

I pragma channel parent : FOUR . DATAVAL

Channel last is used by a buffer to communicate the status of the peer with which it
communicates to the local processor.

3 pragma channel last : FOUR . STATUSVAL

Sink is the channel on which the processor broadcasts a valid value for a task to the3! outside world, once per frame

g pragma channel sink : DATAVAL

Synchronization signal sent between successive iterations of a task:

I pragma channel frame

j 60

I

!2
I

I' channels for peer processors to send values to sacrificial buffers:

3 pragma channel outside : FOUR . DATAVAL

Code for the local processor to interface with the sacrificial buffer

A processor determines the valid value for a task by receiving the values computed by
its peer processors and comparing that value with its own locally-computed value forI that task. Once a processor has received the same value from two processors (one of
which could be itself), it can conclude that the value it received more than once is the

* valid value.

At any time, the communications processor will be running one of two processes (UN-
I DECIDED or DECIDED) for each task.

The process UNDECIDED represents the state of the communications processor when
it has not yet received two values in agreement for some task. The set I is the set of
other processors from which the processor has yet to receive a value, and the set A is
a set of ordered pairs (processor, value) that have been received. If a peer processor

I sends an ignoreme message, its number is removed from L If a peer processor sends
any other data value, that value is compared to previously received values. If that value
is found in the list, the processor concludes that it has the valid value and behaves likeI process DECIDED (keeping track in its first parameter of which peer processes from
which it has not yet heard), else it adds the value to the set of received values and3 behaves like UNDECIDED

UNDECIDED (I, A, untimed) =3 ([] i: I 0 offer.i ? x ->

if (x == ignoreme) then
UNDECIDED (diff (I, {i}), A, untimed) else

if (member Ux, { head (tail (xi)) I xl <- A })) then
DECIDED (diff (I, {i}), x, untimed)J else
UNDECIDED(diff(I,{i}), union(A,{ <i,x> }), untimed)

Once a process has decided the valid value for a task (parameter x in the process
DECIDED, below), it can use that value for further computation, but must rely on- a
process (a concurrently running "smart buffer") to handle reception of the remaining

1 61

I
I

transmissions of values for that task by the other peer processors (whose numbers are
in set I). The smart buffer must also be responsible for notifying the local processor if
any peer processors fail to respond

As soon as the local processor decides the valid value, it sends value over channel
parent to the buffers, who will use it in determining the status (good, bad, or dead) of3 the peer processors

When the local processor has finished notifying the buffers, it announces the value it.3 determined to be valid to the outside world over channel sink, then waits for the frame
synchronization event and starts over.

U DECIDED (I, x, untimed) =
(C] i:I 0 parent.i ! x -> last.i ? s ->

DECIDED (diff (I, {i}), x, untimed))U []
(if (empty (I)) theni sink x x->

if untimed

then frame -> UNDECIDED (FOUR, {}, untimed)3 else UNDECIDED (FOUR, {}, untimed)
else STOP)

3
Code for a smart buffer running in parallel with a processor

I The smart buffer has one of several states depending on whom it heard from last: the
PARENT (local) processor, the PEER (remote or local) processor, or NONEorBOTH

I (ready to receive a message from either).

Initially, a smart buffer has not heard either from its parent (via channel parent) or
from any peer processor (via channel outside). It is ready to communicate via either
channel, and change its state based on which it hears from first

5 NONEorBOTH (i, s, untimed) =
(parent.i ? x -> last.i ! s -> PARENT (i, x, untimed))

11
(outside.i ? y -> PEER Ui, y, s, untimed))

A smart buffer that has last heard from its parent knows the value the parent decided
was valid (x), and is waiting to hear that value from the PEER processor. If it does

362

I
I

hear a value from the peer, it computes a statusval for the peer (okay or bad, dependingI if the value sent by the peer is the same as that decided upon by the parent) and resumes
listening for either the parent or the peer

If the frame event occurs before the buffer hears from the peer, it assumes the peer
is dead and changes its status accordingly. If frame events are not being used, if the
buffer hears from the parent again before hearing from the peer, it sends a message to
the parent (over channel last) indicating that it believes the peer is dead

U PARENT Ui, x, untimed) =

(outside.i ? y ->

if untimed
then frame ->

NONEorBOTH (i, if x==y then ok else bad, untimed)
else

NONEorBOTH (i, if x==y then ok else bad, untimed))
[]

I if untimed
then frame -> NONEorBOTH (i, dead, untimed)
else parent.i ? xx -> last.i ! dead -> PARENT(i, xx, untimed)

A buffer that has heard from the peer processor sends the value it heard to the parent
via the offer channel. After sending an offer it waits for the frame synchronization
event and then resumes waiting to hear from either the parent or the peer

If the processor receives a value from the parent before it can offer the value from
the peer to the parent, obviously the parent already had enough values from other
buffers to make a decision, so the buffer sends the status value from the last frame
to the processor and then computes a new status value for this frame, arrived at by
comparing the value received from the parent this frame with the value received from
the peer this frame, then waits for the frame synchronization event, and then listens

i for either the parent or peer at the start of the next frame

PEER (i, y, s, untimed) -I (offer.i ! y ->
if untimed
then frame -> NONEorBOTH (i, ok, untimed)
else NONEorBOTH Ui, ok, untimed))

[]
(parent.i ? x -> last.i ! s ->

if untimed

63

I
I

then frame ->

NONEorBOTH Ui, if x==y then ok else bad, untimed)
else5sNONEorBOTH Ui, if x==y then ok else bad, untimed))

3 The system consists of a processor (initially running UNDECIDED(FO UR,,true) and
four smart buffers, one for each of the four peer processors. We could optimize this
to three and handle the locally computed value entirely within the local processor if
desired

uSYSTEM = UNDECIDED (FOUR, {}, true)i [i {i last, offer, parent, frame l} I]
((((NONEorBOTH (0, ok, true))

[I {frame} i1 NONEorBOTH (1, ok, true))
[I {frame} i1 NONEorBOTH (2, ok, true))
[I {frame} I NONBEorBOTH (3, ok, true))

I When we hide the communication between the four buffers and the local processor we
get:

UntimedSystem = uSYSTEM \ {l last, offer, parent I}

3 If we dispense with the frame synchronization events:

tSYSTEM = UNDECIDED (FOUR, {}, false)

[I {I last, offer, parent l} I]
((NONEorBOTH(O,ok,false) III NONEorBOTH(l,ok,false)

III NONEorBOTH(2,ok,false) III NONEorBOTH(3,ok,false))
Pl {I frame i} I] frame -> ZERO)

3 SystemWithoutTiming = tSYSTEM \ {l last, offer, parent I}

In order to assert that frame never occurs, the process above includes a transition to5 ZERO if frame should ever occur. Because ZERO is the "worst-possible" process in
the Failures-Divergence model, this will result in tSYSTEM failing any non-trivial
refinement check, should frame occur.

ZERO = ZERO 1I- ZERO

I The bottom process is represented as a non-deterministic choice for purely technical

!1 64

I

I
I

reasons. (FDRcannot itself successfully compile the more usual definition
II -- ZERO = ZERO).

3 The specification for the System described above

MAJORITY's three parameters are sets of processes. I represents the processors which
have not contributed a value for the task this frame, while Zeroes and Ones are re-
spectively, the sets of processors that have contributed a value of zero and a value of
one this frame (note that a processor sending an ignoreme message drops out of I
without ever appearing in Ones or Zeroes that frame)

If the size of Zeroes exceeds one, the specification may output a value of one on channel
sink. It may output a zero on sink if the size of Zeroes exceeds one. If both sets exceed
one in size, the specification produces a nondeterministic result

SIf the set I is not empty at the time the specification sends its decision on the valid
value on channel sink, the specification must behave like process CHOMP until the3 end of the frame

CHOMP acts as a buffer to receive any values transmitted by the peer processors after
Sthe local processor has produced output during that frame on channel sink (in the

system, the smart buffers handle this)

£ MAJORITY (I, Zeroes, Ones) =

(outside ? i:I ? x ->

if (x == zero)
then MAJORITY (diff (I, {i}), union (Zeroes, {i}), Ones)

else if (x == one)
then MAJORITY(diff(I, {i}), Zeroes, union(Ones, {i}))
else MAJORITY(diff(I, {i}), Zeroes, Ones))

[1
((if 1 < card (Ones)

then sink ! one -> CHOMP (I)
else STOP)I I-m
if 1 < card (Zeroes)
then sink ! zero -> CHOMP (I)
else STOP)

if empty (I)
then (if card (Ones) < card (Zeroes)

3 65

I

I
I

then sink ! zero -> CHOMP (I)
else if card (Zeroes) < card (Ones)
then sink ! one -> CHOMP (I)
else (sink ! zero-> CHOMP (I) I

sink ! one-> CHOMP (I)))
i else STOP

CHOMP(I) =

(outside ? i:I ? x -> CHOMP (diff (I, {i})))

frame -> MAJORITY (FOUR, {}, {})

IInitially, no processors have sent values of one or zero, and the specification is waiting
on a value from all four processors

I SPEC = MAJORITY (FOUR, {}, {})

Here we model the data distribution phase. A value on channel source is copied to
each of the four outside channels by processes INJECTOR and SPREAD. A frame
synchronization event is expected between sucessive inputs on channel source (and
consequently between any successive pair of outside.i events).

i pragma channel source : DATAVAL

INJECTOR = source ? x -> SPREAD (FOUR, x)

I SPREAD (I, x) =
if empty (I)
then frame -> INJECTOR

else 1I- i:I 0 outside.i ! x -> SPREAD (diff(I, {i}), x)

FRAMESYNCH =

(INJECTOR [I {I outside, frame 1} I] UntimedSystem) \
{I outside, frame I}

We introduce the possibility of a fault on channel outside. 0 The same symmetry ar-
guments previously made apply here.

XFRAMESYNCH =
((INJECTOR \ {I outside.0 I} III CHAOS ({I outside.0 I}))
[l {I outside, frame]} I]

366

3 ~UntimedSystem) \ Ioutside, frame I

CYCLICINPUT =3 ~(INJECTOR EP {I outside 1} 1] SystemWithoutTiming)\
{I outside, frame l

3 XCYCLICINPUT =
((INJECTOR \ I outside.O 1} 111 CHAOS M{ outside.O 11))

(I {l outside 1} 1]

SystemWithoutTiming) \ { outside, frame 1}

3pragma channel forward :FOUR .DATA VAL

A 1-place buffer is introduced along each of the four outside.i channels, fed by the3 ~INJECT OR

BOUNDEDDELAY1
((INJECTORE [outside<-forward)]

[I fl forward 11 1]
CBBUFFc(1,forward.O,outside.O)3 IllBBUFFc(i,forward.1,outside.1)
IIBBUFFc(1,forward.2,outside.2)
IIBBUFFc(1,forward.3,outside.3))
fl { forward, frame I

[I { outside 1) 1]3 ~SystemWithoutTiming) \ Ioutside 1}

The possibility of a fault is allowed on channel outside. 0

U XBOUNDEDDELAY1 =
((INJECTOR \ {I outside.O 1} 111 CHAOS C{I outside.O 11))

El I forward 1} 11

CBBUFFc(1,forward.l,outside.1)
IIBBUFFc(l,forward.2,outside.2)3 IllBBUFFc(l,forward.3,outside.3))
f l forward, frame 1}

[I {l outside 1} 113 ~SystemWithoutTiming) \ loutside 11

3pragma. channel tock

3 67

U
3

REGULATOR runs in parallel with the distribution of values to the outside channels
to guarantee that all transmissions of values on the the outside.i channels (i is an
element of parameter I) occur within N tocks, and that following the completion of5 one frame of events on the outside channels, M tocks elapse before the outside events
for the next frame commence

m REGULATOR (I, M, N) =
tock -> REGULATOR (I, M, N) [13 outside ? i:I ? x -> REGULATOR' (I, M, N, diff (I, {i}), 0)

J is the subset of I whose outside channels have had no event this frame yet, while n
is the number of tocks elapsed since beginning of this frame's outside events

REGULATOR' (I, M, N, J, n) =

(if n < N
then tock -> REGULATOR' (I, M, N, J, n+1)
else STOP)

(outside ? i:I ? x -> REGULATOR' (I, M, N, diff (0, {i}), n))

I](if empty (3)
then DELAY (M); REGULATOR (I, M, N)3 else outside ? i:I ? x -> REGULATOR'(I,M,N,diff(J,{i}),n))

DELAY ensures that n tocks elapse between last outside event of one frame and first5 outside event of the next frame

DELAY (n) = if 0 < n then tock -> DELAY (n-1) else SKIP

m Adding the REGULATOR to the rest of the already-developed system gives:

3 REGULATED1 =
(((INJECTOR [[outside<-forward]]

[I {l forward I} I1
BBUFFc(1,forward.0,outside.0)

III BBUFFc(l,forward.l,outside.1)
III BBUFFc(I,forward.2,outside.2)
III BBUFFc(i,forward.3,outside.3))
) \ {I forward, frame 1}

ml {I outside 1} 1]
REGULATOR (FOUR, 2, 2)) \ {tock}

368

1
I

Sl {l outside I} I]I SystemWithoutTiming) \ {l outside l}

3 and if we allow channel outside. 0 to be faulty:

XBOUNDEDDELAY1 =3UDEDL (((INJECTOR \ {I outside.O I} Ill CHAOS ({I outside.O I}))
[I {I forward I} I]
(BBUFFc(1,forward.1,outside.1)I]I BBUFFc(1,forward.2,outside.2)
III BBUFFc(1,forward.3,outside.3))

) \ {I forward, frame I}
[f {I outside I} I]
SystemWithoutTiming) \ {l outside I}

I Suppose we want to add the restriction that an event occurs on each of the four outside
channels every k tocks, where k can vary from frame to frame, but must always be
within some bounds of N tocks. Say, for some other integers A and B, that k can
never be less than N - A nor more than N + B. Process PWB guarantees that rate
of events on channel c:

PWB (c, N, B, A) = PWB' (c, N, B, A, 0)

3 PWB' (c, N, B, A, n) =
if n < N -B

then tock -> PWB' (c, N, B, A, n+1)

else if n < N + A
then (tock-> PWB' (c, N, B, A, n+1))

-l1 (c ? x -> PWB' (c, N, B, A, n-N))
else c ? x -> PWB' (c, N, B, A, n-N)

PWBs = C((PWB (outside.0, 5, 2, 2)
[I {rock} 1] PWB (outside.I, 5, 2, 2))
[l {tock} 1] PWB (outside.2, 5, 2, 2))

3I {tock} 11 PWB (outside.3, 5, 2, 2))

i Adding the restrictions on the buffers to the system yields:

PWB1 = ((INJECTOR[[outside<-forward]]
[I {I forward 1} I]
C BBUFFc (1,forward.0,outside.0)

*69

U

I
i I BBUFFc (1,forward.2,outside.1)U II BBUFFc (1,forward.2,outside.2)
III BBUFFc (1,forward.3,outside.3))

5) \ {I forward, frame i}
[I {I outside I} i]
(PWBs \ {tock}
S[I {I outside 1} I]
SystemWithoutTiming)) \ {I outside I}

3 RUN(X) = [] a:X 0 a -> RUN(X)

But we must also model the possibility that our faulty channel (channel outside. 0)
does not produce its values in a timely fashion:

XPWBs = ((PWB (outside.1, 5, 2, 2)
[I {tock} 1] PWB (outside.2, 5, 2, 2))
[I {tock} I] PWB (outside.3, 5, 2, 2))

I The system becomes:

3 XPWB1 = ((INJECTOR[[outside<-forward)]
[I {f forward 1} 1]

RUN ({lforward.O}) III CHAOS ({Ioutside.OI})
III BBUFFc (1,forward.1,outside.1)
III BBUFFc (l,forward.2,outside.2)
III BBUFFc (l,forward.3,outside.3))
\ {1 forward, frame I}

[I {t outside 1} I]
(XPWBs \ {tock}

[l {I outside 1} I]
SystemWithoutTiming)) \ {l outside I}

I Generic 1-place buffers

5 An N-place buffer receiving input on channel source and producing output on channel
sink:

3 BBUFF (N) = BBUFFc (N, source, sink)

BBUFFc is an N-place buffer also taking the names of its input and output channels

as parameters:

* 70

U

U
U

I BBUFFc (N, in, out) = BBUFF' (N, 0, <>, in, out)

3 There are two more components to the state of BBUFF': it's current contents (the
list of values s) and the number of items currently stored in the buffer:

3 BBUFF' (N, n, s, in, out) =

if n == 0
then in ? x -> BBUFF' (N, 1, <x>, in, out)

I else if n == N
then out ! head (s) -> BBUFF' (N, n-i, tail (s), in, out)
else

((out ! head (s) -> BBUFF' (N, n-i, tail (s), in, out))
[] C in ? x -> BBUFF' (N, n+i, s^<x>, in, out)3 L-I out ! head (s) -> BBUFF'(N,n-i,tail(s),in,out)))

I
7 Recovery from transient errors

m In order to arrange that a process can recover from a transient error even if values
are not always agreed before use, we must arrange that:

3 * An FCR which has suffered a transient fault can detect the resulting error and
thus take appropriate recovery action.

5 . While such a node is recovering the erroneous values, it does not promote failure
in the other FCRs in the system.

e During recovery, all significant state values will be recovered from correctly func-
tioning peer nodes, and sufficient computation will be performed to maintain

* and re-generate state which is not directly communicated.

The first two requirements are relatively undemanding; the first is effectively a con-
straint on the types of errors that we can expect to tolerate. One implication which
must be considered, however, is that the design will have to distinguish between a
"local" value and a value received from a peer when performing comparisons3 . If

the "local" value disagrees with the majority, then a node should be considered to
have suffered a fault and should attempt to recover the relevant values. The second
requirement is also trivial for some classes of faults. If no further errors occur in the

m 3Note that the models in Section 3 did not need to make this distinction.

3 71

3

I
U
* portion of the system state related to that which we are attempting to recover (using

the dependency relationship discussed in Section 5.2), we are guaranteed that three
correct values will always be available to non-faulty nodes, and thus any erroneous3 output from a processor in the process of recovering will be ignored. We can gain
some advantage, however, from allowing a processor which has detected a transient
fault to notify its peers of this fact: the three remaining FCRs may then be able to
survive a second non-independent error by moving to a 2-out-of-3 voting scheme.

The last requirement in the above list is the most difficult to satisfy. If, for reasons
of timing drift or because of a permuted schedule, a processor suffering a transient
fault was the earliest node to compute the relevant values in each frame, we may
never be able to guarantee that it can obtain a timely, reliable value from its peers.3 We can suggest several approaches to this problem, including

o Arranging that the entire system reverts to a fall-back schedule which does3 guarantee to agree all state values by voting.

o Finding (where possible) a "reversionary" schedule for the failed processor alone.

o Arranging that the recovering processorand one of the fault-free peerschange
to pair of reversionary schedules which transfer corrected data to the recovering
node while maintaining just sufficient of the normal behavior to ensure correctU system operation.

These possibilities are discussed below:

7.0.1 A fully-voted reversionary schedule

We might propose the following scheme of operation: whenever it is determined that
a processor has computed an invalid result for some task, that processor will be asked
to sit idle until the end of the current frame, at which time all processors will stop3 running their particular permuted schedules and start running a single already-agreed-
upon schedule. Thus, during the next frame, all processors will be running the same
schedule. We know because of our requirement from Section 5.1.2 that only permitted
permutations were used, that the output records for all non-invalidated replicated
instances of all tasks contain the same data, and that if the invalid processor has not
failed, it can recover valid values for all tasks (values derived from voted values of
all tasks in the basis set) by the end of the next frame. If no notifications of invalid
results are received by any processors during the execution of the recovery frame, the
processors switch to their particular permuted schedules at the end of that recovery
frame.

This scheme does, however, limit many of the advantages which motivate our use
a relaxed voting scheme. If we must be able to operate on a fully-voted schedule, we
cannot take advantage of the performance benefits which overlapping communication

372

U
U

and computation will bring. In particular, there will be many sets of permuted
schedules for which no suitable fixed schedule with complete voting will exist. Further,
at least for the duration of the recovery, we will have lost the benefits of permuted3 scheduling.

7.0.2 A single reversionary schedule

This alternative again suffers from the disadvantage that for many applications there
will be no single order of task execution which requires data only after it has been3made available by one of the peer nodes. If only the recovering processor reverts to
this schedule, however, we can remove some of the constraints limiting our execution
order. In particular, the reversionary schedule need not calculate any outputs or other
values which are calculated afresh in each cycle; it need only perform that minimum
computation which is necessary to maintain the relevant node state. In terms of the
data dependency graph, we need only execute those tasks which occur on the cycles
through the initial erroneous task. Branches which do not form part of a cycle may
be neglected, and indeed as we saw above, there are concrete advantages to be gained
from a processor informing its peers that it should be ignored in any votes which take
place during its recovery.

Due to the difficulty of finding a suitable schedule (if one exists), this technique will
obviously be limited in its application, particularly as to exploit the potential benefits
of permuted scheduling, we must find a number of recovery schedules, each capable
of re-generating a particular set of corrupt values while maintaining the outputs and3 correct behavior of the uncorrupted elements of the application.

7.0.3 Partial reversionary schedules

In an attempt to avoid some of the difficulties associated with both of the above
schemes, we propose considering a method which combines some features from each.
Finding a single processor schedule which is compatible with the permuted schedules
already running on fault-free processors, as required by the previous scheme is clearly
more difficult than the problem of finding two schedules which suffice to transfer
some part of the system schedule to the recovering processor. This latter problem
is simplified further if we allow the fault-free partner in such a recovery to neglect
some of its output calculations (on the basis that there will still be duplicate correct
values generated by the remaining pair) - we clearly lose tolerance to further faults
during this operation, but the practical value of such resilience to two faults will
obviously depend on the reliability analysis of a particular application. We do require
a mechanism for identifying which processor should assist in the recovery when a fault
is detected, but even here we may have a degree of choice over which of the remaining3 permuted schedules is most suitable for correcting the specific error identified.

*73

I
U

The greatest cost of this approach is the effort of identifying sufficiently many
reversionary schedules to maintain the benefits of temporal redundancy. We should
note, however, that this is a task which is determined entirely by the static schedules3 chosen, and thus need not be carried out in a time-critical environment. The run-time
penalty should be little more than identifying which regions of the data-dependency
graph have been invalidated and looking up the appropriate recovery schedules in a3 pre-computed table.

To ease this task, it is perhaps desirable to consider the data-dependency graph
as being divided into software containment regions which are treated as either being
believed correct or believed corrupted as a whole. These regions must obviously
contain the transitive closure of the relevant voted state variables, as discussed in
Section 5.2. We also note that the fault-free processors initiating a recovery must
agree on the identity of the FCR to be recovered and on the particular peer who will
enter the assisting reversionary schedule. This information is, however, amenable to
voting in a similar manner to other values, and is only required when votes are taken
on state data - it need not apply to the agreement of output values, for example.

* 8 Conclusions

We do not expect this document to be viewed as a complete analysis of the FTP
design, but to be seen as a working paper describing the state of various threads
of analysis and modeling. One of the primary purposes of this paper is indeed, to
present some ideas for comment from Draper representatives who, we hope, will be
able to view them in the context of their greater familiarity with the concerns of the
application domain. Significant features of recent developments include:

I . Clarification of arguments based on symmetry which can be used to establish
properties of the full FTP system from properties of a single voter. This work
is sufficiently established that we feel a formal mathematical proof of the ap-
proach could be given. It is a result which will be particularly important in the
future development of models which include more detail about the operating3 mechanisms of their components. It has already assisted in the rest of this work.

9 Moving toward a less abstract model bearing a closer resemblance to the im-
plementation, we have gained significant understanding of the problems faced
in several key areas. These include

So tolerance of transient faults,

o recovery after transient errors, and

o the benefits to be gained from temporal redundancy and permuted schedul-
ing.

* 74

U

U
U

o We have presented models of the FTP consistency algorithm which include
explicit timing information in both synchronous and semi-asynchronous
models. These models include sufficient information about the communi-3 cation mechanism to investigate the need for non-blocking and sacrificial
buffers. We feel that these models approach the "Synchronous replicated"
and "Asynchronous distributed" views of [1], although they still involve

I significant abstraction from the way in which the processing and voting
elements operate, and the issue of establishing co-ordinated global timing
has still to be addressed in detail.

The modeling which we have completed in this area is still highly abstract, but
it provides important framework elements, and highlights those areas which3 gplace additional emphasis on new theories and tools.

The major prospects for future work on the demonstrator application lie in the fol-3 lowing areas

" Our models are still very abstract in some areas: our models of communica-3 tion are relatively close to transputer style implementations, but areas such
as timing, clock synchronization and the mechanisms connecting hardware and
software could benefit from more detail. Additional information may well allow
us to relax some of our design constraints: for example our asynchronous timing
model requires large margins in the specification of time-outs and cycle lengths,
whereas slight improvements to the design we are formalizing may allow these
margins to be reduced.

" At the implementation level, more detailed models of the interaction between
software tasks is required, both in terms of specifying application timing con-
straints and especially in the relationship between communications hardware

* Iand software.

* The interface between communication, voting, and application software sched-
ules is perhaps in greatest need of further formalization. Both this area and
more general timing and scheduling issues will require the ability to model and
distinguish systems using multi-processing on a single CPU and communications
hardware supporting a single processor, as well as the theoretically simpler case
of true multi-processor systems.

These prospects highlight some points of importance in the tool-development part
of the project, in particular in the area of prioritization (as noted in Section 5.1.1)
and possibly in assisting the modeling the interaction between varied hardware and3 software environments.

* 75

I

I
I

References

[1] N.A. Brock. Real-Time Scheduler: Natural Language Problem Statement. Tech-
nical report, Charles Stark Draper Laboratory, Inc., 1994. Deliverable D2.1 of
SBIR N00014-93-C-0213, in [?].

[2] Neil A. Brock and Sharon L. Donald. Discussion of Errors and Their Effects on
a HRT Scheduler. Technical report, The Charles Stark Draper Laboratory, Inc.,
1994. Deliverable to SBIR N00014-93-C-0213, in [6].

3 [3] Formal Systems (Europe) Ltd, 3 Alfred St, Oxford OXl 4EH, UK. Failures-
Divergences Refinement (FDR), User Manual and Tutorial, 1994. Contact
D.M. Jackson; Tel: [+44] (0)1865 728460, Fax [+44] (0)1865 201114, E-mail:
davecfsel. com.

[4] P.H.B. Gardiner and M.H. Goldsmith. Inside FDR 2. Technical report, Formal
Systems Design & Development, Inc., 1994. Adjunct to D1.2 of SBIR N00014-93-
C-0213, in [?].

3 [5] M.H. Goldsmith. A CSP Priority Operator for FDR 2; Prototype Software for
Discrete Real-time Extensions to FDR. Technical report, Formal Systems Design3 & Development, Inc., 1994. Deliverable to SBIR N00014-93-C-0213, in [?].

[6] M.H. Goldsmith et al. N0001-93-C-0213: Third Quarterly Report. Technical
report, Formal Systems Design and Development, Inc., P.O. Box 3004, Auburn,
AL 36831-3004, 1994.

[7] David M. Jackson and M.H. Goldsmith. Specifying Task Management; Single
Processor Systems. Technical report, Formal Systems Design & Development,
Inc., 1994. Deliverables D 2.2 and D 2.3 of SBIR N00014-93-C-0213, in [6].

3 [8] Patrick Lincoln and John Rushby. A Formally Verified Algorithm for Interactive
Consistency Under a Hybrid Fault Model. In Proceedings of 23rd Fault-Tolerant3 Computing Symposium, 1993.

[9] B.L. Di Vito, R.W. Butler, and J.L. Caldwell. Formal Design and Verification of a
Reliable Computing Platform For Real-Time Control - Phase 1 Results. Technical
Memorandum 102716, NASA, 1990.

I A Vector-based Model for Permuted Scheduling

3 abstract. csp: An FDR-1 model of a voter for permuted schedules

* 76

I

m
I
3 (c) Formal Systems Design & Development, Inc, 1994

Originated by: Michael Goldsmith This version:3 __ $Id: abstract.csp,v 2.0 1994/12/16 17:44:03 dave Del $

Define two vector operators in Standard ML: getnth returns the selected component of
Sa sequence, setnth sets the selected component of the sequence to be the value specified.

Declare the function names as non-CSP definitions
pragma opaque "ML" getnth
pragma opaque "ML" setnth

m Include the ML source code for the function implementations
pragma inline "ML" local
pragma inline "ML" fun MLgetnth (0, a::x) = a
pragma inline "ML" I MLgetnth (n, : :x) = MLgetnth (n-1, x)
pragma inline "ML" I MLgetnth _ raise SemanticError
pragma inline "ML" ("getnth: index too large")
pragma inline "ML" in
pragma inline "ML" fun CSPgetnth [n, s) =
pragma inline "ML" let val MLs = CheckSeq s
pragma inline "ML" val MLn = NumberOf (CheckAtom n)
pragma inline "ML" in MLgetnth (MLn, MLs)
pragma inline "ML" end
pragma inline "ML" I CSPgetnth x = raise TypeError
pragma inline "ML" ("getnth: expected <number,sequence>,"
pragma inline "ML" " found "
pragma inline "ML" print-expression (EXPseqcomp Ux, [])))

m pragma inline "ML" end;

m The following definition includes a call to print merely as development aid.
pragma inline "ML" local
pragma inline "ML" fun revonto (a::x, y) = revonto (x, a::y)
pragma inline "ML" I revonto (-, y) =

pragma inline "ML" (print "\nSTATE ";

pragma inline "ML" map(print o print.expression)y;
pragma inline "ML" print "\n"; y)
pragma inline "ML" fun MLsetnth (0, -::x, v, y) = revonto (y, v: :x)
pragma inline "ML" I MLsetnth (n, a::x, v, y) =

I 77

I

I
I

pragma inline "ML" MLsetnth (n-1, x, v, a::y)
pragma inline "ML" I MLsetnth _ = raise SemanticError
pragma inline "ML" ("setnth: index too large")I pragma inline "ML" in
pragma inline "ML" fun CSPsetnth [n, s, v] =

pragma inline "ML" let val MLs = CheckSeq s
pragma inline "ML" val MLn = NumberOf (CheckAtom n)
pragma inline "ML" val - = NumberOf (CheckAtom v)
pragma inline "ML" in EXPseqcomp (MLsetnth (MLn, MLs, v, [), [)
pragma inline "ML" end
pragma inline "ML" I CSPsetnth x = raise TypeError
pragma inline "ML" ("setnth: expected number,sequence,number>,"
pragma inline "ML" " found "
pragma inline "ML" print-expression (EXPseqcomp (x, [])));
pragma inline "ML" end;

Declare the relationship between the CSP names and the ML functions

pragma inline "ML" DefineMLFunction "getnth" CSPgetnth;5 pragma inline "ML" DefineMLFunction "setnth" CSPsetnth;

The following sets and channels are equivalent to those in timing. csp

I TASKS = { 0,1,2, 3,4 }
BOOL = { true, false }
pragma channel task TASKS . BOOL

pragma channel pass TASKS
pragma channel work, sync

The communication model is now a single process with a vector argument
COMMS = JUDGE (<2,2,2,2,2>)

Initially this process accepts a termination signal, and if it is valid, moves to the DSZ
state to decrement the appropriate value. If the execution was invalid, it performs the

associated work (actually an abstraction of the decision process), and remains ready
to accept another termination. Note that inputs are not accepted while work is being
offered: this captures the prioritization of the "internal" action work over external
communication

JUDGE (s) =

task ? i ? b ->

* 78

I

I
U

if b
then DSZ (s, i, getnth (i, s))
else work -> JUDGE (s)

This process examines the count relating to task i and performs appropraite action. If
the recent termination we the first successful one, the counter is decremented (without
doing any work for the comparison), and the JUDGE returns to its initial state. If
one previous successful execution had preceded this one, a comparison is performed,
and the successful acquisition of good data is signalled on pass. Further successful ex-I ecutions are ignored (after the comparison, which is necessary to detect the occurence
of a transient error, although not to determine the actual value required).

DSZ (s, i, si) =
if si == 23ithen JUDGE (setnth (i, s, 1))
else if si =- 1
then work -> pass ! i -> FRAME (setnth (i, s, 0))I else work -> JUDGE (s)

When a pass signal has been indicated, we examine the- new values of all the countersI in s to see if they are now all zero. (This uses the FDR set operator.) If this is the case,
further tasks are ignored after a comparison, and the end-of-frame synchronization3 may occur. Otherwise the sub-system returns to its initial state.

FRAME (s) =

if set (s) == { 0)
then (sync -> COMMS) [] task ? any -> work -> FRAME (s)
else JUDGE (s)I

I
I
I
3 This is Release 2.0 of this document, last modified by Dave Jackson at 17:46:53 GMT on December

16, 1994.

I 79
I

